Heart Disease Prediction Based On Machine Learning

Sumanth Reddy Poluri, Venkata Krishna Reddy Tiyyagura, K. S. Sri
{"title":"Heart Disease Prediction Based On Machine Learning","authors":"Sumanth Reddy Poluri, Venkata Krishna Reddy Tiyyagura, K. S. Sri","doi":"10.1109/IConSCEPT57958.2023.10170410","DOIUrl":null,"url":null,"abstract":"An accurate model for DBSCAN (Outlier detection and removal). And implementing KNN by predicting the suitable k value. While SMOTE-ENN is used to balance the training dataset. Gradient boosting is a technique where new models are made and used to forecast the residuals or error, then the scores are added to find the presence or absence of disease. And implementing KNN by predicting the suitable k value. The model was built using few publicly accessible datasets, Statlog, heart failure clinical records datasets and Cleveland. These respective models output was compared to Each other respectively.","PeriodicalId":240167,"journal":{"name":"2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IConSCEPT57958.2023.10170410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An accurate model for DBSCAN (Outlier detection and removal). And implementing KNN by predicting the suitable k value. While SMOTE-ENN is used to balance the training dataset. Gradient boosting is a technique where new models are made and used to forecast the residuals or error, then the scores are added to find the presence or absence of disease. And implementing KNN by predicting the suitable k value. The model was built using few publicly accessible datasets, Statlog, heart failure clinical records datasets and Cleveland. These respective models output was compared to Each other respectively.
基于机器学习的心脏病预测
一个精确的DBSCAN(异常值检测和去除)模型。并通过预测合适的k值来实现KNN。而SMOTE-ENN则用于平衡训练数据集。梯度增强是一种新模型用来预测残差或误差的技术,然后加上分数来发现疾病的存在或不存在。并通过预测合适的k值来实现KNN。该模型是使用少数可公开访问的数据集、Statlog、心力衰竭临床记录数据集和Cleveland建立的。分别对这些模型的输出结果进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信