Improved method of classification algorithms for crime prediction

Abba Babakura, M. N. Sulaiman, Mahmud Yusuf
{"title":"Improved method of classification algorithms for crime prediction","authors":"Abba Babakura, M. N. Sulaiman, Mahmud Yusuf","doi":"10.1109/ISBAST.2014.7013130","DOIUrl":null,"url":null,"abstract":"The growing availability of information technologies has enabled law enforcement agencies to collect detailed data about various crimes. Classification is the procedure of finding a model (or function) that depicts and distinguishes data classes or notions, with the end goal of having the ability to utilize the model to predict the crime labels. In this research classification is applied to crime dataset to predict the “crime category” for diverse states of the United States of America (USA). The crime data set utilized within this research is real in nature, it was gathered from socio-economic data from 1990 US census. Law enforcement data from 1990 US LEMAS survey, and from the 1995 FBI UCR. This paper compares two different classification algorithms namely - Naïve Bayesian and Back Propagation (BP) for predicting “Crime Category” for distinctive states in USA. The result from the analysis demonstrated that Naïve Bayesian calculation out performed BP calculation and attained the accuracy of 90.2207% for group 1 and 94.0822% for group 2. This clearly indicates that Naïve Bayesian calculation is supportive for prediction in diverse states in USA.","PeriodicalId":292333,"journal":{"name":"2014 International Symposium on Biometrics and Security Technologies (ISBAST)","volume":"386 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Symposium on Biometrics and Security Technologies (ISBAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBAST.2014.7013130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

The growing availability of information technologies has enabled law enforcement agencies to collect detailed data about various crimes. Classification is the procedure of finding a model (or function) that depicts and distinguishes data classes or notions, with the end goal of having the ability to utilize the model to predict the crime labels. In this research classification is applied to crime dataset to predict the “crime category” for diverse states of the United States of America (USA). The crime data set utilized within this research is real in nature, it was gathered from socio-economic data from 1990 US census. Law enforcement data from 1990 US LEMAS survey, and from the 1995 FBI UCR. This paper compares two different classification algorithms namely - Naïve Bayesian and Back Propagation (BP) for predicting “Crime Category” for distinctive states in USA. The result from the analysis demonstrated that Naïve Bayesian calculation out performed BP calculation and attained the accuracy of 90.2207% for group 1 and 94.0822% for group 2. This clearly indicates that Naïve Bayesian calculation is supportive for prediction in diverse states in USA.
犯罪预测分类算法的改进方法
信息技术的日益普及使执法机构能够收集各种犯罪的详细数据。分类是寻找描述和区分数据类别或概念的模型(或函数)的过程,其最终目标是能够利用模型来预测犯罪标签。在本研究中,将分类应用于犯罪数据集,以预测美利坚合众国(USA)不同州的“犯罪类别”。本研究中使用的犯罪数据集本质上是真实的,它是从1990年美国人口普查的社会经济数据中收集的。执法数据来自1990年美国LEMAS调查和1995年FBI UCR。本文比较了两种不同的分类算法,即Naïve贝叶斯和反向传播(BP),用于预测美国不同州的“犯罪类别”。分析结果表明,Naïve贝叶斯计算可以进行BP计算,对第1组和第2组的准确率分别为90.2207%和94.0822%。这清楚地表明Naïve贝叶斯计算对美国各州的预测是支持的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信