Design of fuzzy controllers for semi-active suspension generated through the genetic algorithm

T. Hashiyama, T. Furuhashi, Y. Uchikawa
{"title":"Design of fuzzy controllers for semi-active suspension generated through the genetic algorithm","authors":"T. Hashiyama, T. Furuhashi, Y. Uchikawa","doi":"10.1109/ANNES.1995.499464","DOIUrl":null,"url":null,"abstract":"Presents a new method to generate fuzzy controllers through the use of a genetic algorithm (GA). Genetic operations are implemented to determine almost all of the parameters in the fuzzy controllers, such as the input variables, membership functions and fuzzy control rules. These parameters are encoded into the chromosomes. Setting the performance index is the only procedure necessary for the designer of the controllers. A GA with a new local improvement mechanism, which is based on genetic recombination in bacterial genetics, is applied to our method. Comparisons with other conventional GAs are also discussed. To show the effectiveness of our approach, fuzzy controllers for a semi-active suspension system are generated.","PeriodicalId":123427,"journal":{"name":"Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANNES.1995.499464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Presents a new method to generate fuzzy controllers through the use of a genetic algorithm (GA). Genetic operations are implemented to determine almost all of the parameters in the fuzzy controllers, such as the input variables, membership functions and fuzzy control rules. These parameters are encoded into the chromosomes. Setting the performance index is the only procedure necessary for the designer of the controllers. A GA with a new local improvement mechanism, which is based on genetic recombination in bacterial genetics, is applied to our method. Comparisons with other conventional GAs are also discussed. To show the effectiveness of our approach, fuzzy controllers for a semi-active suspension system are generated.
采用遗传算法生成半主动悬架模糊控制器的设计
提出了一种利用遗传算法生成模糊控制器的新方法。模糊控制器中几乎所有的参数,如输入变量、隶属函数和模糊控制规则,都是通过遗传运算来确定的。这些参数被编码到染色体中。设置性能指标是控制器设计者所需要的唯一过程。将一种基于细菌遗传学中基因重组的局部改进机制的遗传算法应用于该方法。并与其他常规气体进行了比较。为了证明该方法的有效性,给出了半主动悬架系统的模糊控制器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信