File Fragment Classification-The Case for Specialized Approaches

Vassil Roussev, S. Garfinkel
{"title":"File Fragment Classification-The Case for Specialized Approaches","authors":"Vassil Roussev, S. Garfinkel","doi":"10.1109/SADFE.2009.21","DOIUrl":null,"url":null,"abstract":"Increasingly advances in file carving, memory analysis and network forensics requires the ability to identify the underlying type of a file given only a file fragment. Work to date on this problem has relied on identification of specific byte sequences in file headers and footers, and the use of statistical analysis and machine learning algorithms taken from the middle of the file. We argue that these approaches are fundamentally flawed because they fail to consider the inherent internal structure in widely used file types such as PDF, DOC, and ZIP. We support our argument with a bottom-up examination of some popular formats and an analysis of TK PDF files. Based on our analysis, we argue that specialized methods targeted to each specific file type will be necessary to make progress in this area.","PeriodicalId":101922,"journal":{"name":"2009 Fourth International IEEE Workshop on Systematic Approaches to Digital Forensic Engineering","volume":"213 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"74","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fourth International IEEE Workshop on Systematic Approaches to Digital Forensic Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SADFE.2009.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 74

Abstract

Increasingly advances in file carving, memory analysis and network forensics requires the ability to identify the underlying type of a file given only a file fragment. Work to date on this problem has relied on identification of specific byte sequences in file headers and footers, and the use of statistical analysis and machine learning algorithms taken from the middle of the file. We argue that these approaches are fundamentally flawed because they fail to consider the inherent internal structure in widely used file types such as PDF, DOC, and ZIP. We support our argument with a bottom-up examination of some popular formats and an analysis of TK PDF files. Based on our analysis, we argue that specialized methods targeted to each specific file type will be necessary to make progress in this area.
文件片段分类——专门方法的案例
在文件雕刻、内存分析和网络取证方面的日益进步要求能够识别给定文件片段的文件的底层类型。迄今为止,解决这个问题的工作依赖于识别文件头和页脚中的特定字节序列,以及使用从文件中间提取的统计分析和机器学习算法。我们认为这些方法从根本上是有缺陷的,因为它们没有考虑到广泛使用的文件类型(如PDF、DOC和ZIP)中固有的内部结构。我们通过对一些流行格式的自下而上的检查和对TK PDF文件的分析来支持我们的论点。根据我们的分析,我们认为针对每种特定文件类型的专门方法对于在这一领域取得进展是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信