Evaluating and improving integration quality for heterogeneous data sources using statistical analysis

Evguenia Altareva, Stefan Conrad
{"title":"Evaluating and improving integration quality for heterogeneous data sources using statistical analysis","authors":"Evguenia Altareva, Stefan Conrad","doi":"10.1109/IDEAS.2005.25","DOIUrl":null,"url":null,"abstract":"This paper considers the problem of integrating heterogeneous semi-structured data sources with the purpose of estimating integration quality (IQ). Integration of such data sources leads to results with unpredictable trustworthiness and none of the existing methods is capable of accounting for the uncertainty which is accumulated over all of the integration steps and which affects integration quality. To compute the uncertainties we suggest using a well-established statistical method Latent Class Analysis (LCA). This method allows to analyze the influence of the latent factors associated with the real-world entities on the set of data. We show on examples how the proposed approach can be used for evaluating and improving IQ giving an important tool to the users concerned with the data's trustworthiness.","PeriodicalId":357591,"journal":{"name":"9th International Database Engineering & Application Symposium (IDEAS'05)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"9th International Database Engineering & Application Symposium (IDEAS'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDEAS.2005.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper considers the problem of integrating heterogeneous semi-structured data sources with the purpose of estimating integration quality (IQ). Integration of such data sources leads to results with unpredictable trustworthiness and none of the existing methods is capable of accounting for the uncertainty which is accumulated over all of the integration steps and which affects integration quality. To compute the uncertainties we suggest using a well-established statistical method Latent Class Analysis (LCA). This method allows to analyze the influence of the latent factors associated with the real-world entities on the set of data. We show on examples how the proposed approach can be used for evaluating and improving IQ giving an important tool to the users concerned with the data's trustworthiness.
使用统计分析评估和改进异构数据源的集成质量
本文研究了异构半结构化数据源的集成问题,并对集成质量进行了评估。这些数据源的集成导致结果具有不可预测的可信度,并且现有的方法都无法解释在所有集成步骤中积累的不确定性,从而影响集成质量。为了计算不确定性,我们建议使用一种成熟的统计方法潜类分析(LCA)。这种方法允许分析与现实世界实体相关的潜在因素对数据集的影响。我们通过实例展示了所提出的方法如何用于评估和提高智商,为关心数据可信度的用户提供了一个重要的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信