DTeam @ VarDial 2019: Ensemble based on skip-gram and triplet loss neural networks for Moldavian vs. Romanian cross-dialect topic identification

D. Tudoreanu
{"title":"DTeam @ VarDial 2019: Ensemble based on skip-gram and triplet loss neural networks for Moldavian vs. Romanian cross-dialect topic identification","authors":"D. Tudoreanu","doi":"10.18653/v1/W19-1422","DOIUrl":null,"url":null,"abstract":"This paper presents the solution proposed by DTeam in the VarDial 2019 Evaluation Campaign for the Moldavian vs. Romanian cross-topic identification task. The solution proposed is a Support Vector Machines (SVM) ensemble composed of a two character-level neural networks. The first network is a skip-gram classification model formed of an embedding layer, three convolutional layers and two fully-connected layers. The second network has a similar architecture, but is trained using the triplet loss function.","PeriodicalId":344344,"journal":{"name":"Proceedings of the Sixth Workshop on","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth Workshop on","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-1422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This paper presents the solution proposed by DTeam in the VarDial 2019 Evaluation Campaign for the Moldavian vs. Romanian cross-topic identification task. The solution proposed is a Support Vector Machines (SVM) ensemble composed of a two character-level neural networks. The first network is a skip-gram classification model formed of an embedding layer, three convolutional layers and two fully-connected layers. The second network has a similar architecture, but is trained using the triplet loss function.
DTeam @ VarDial 2019:基于skip-gram和三重损失神经网络的集成,用于摩尔多瓦语与罗马尼亚语跨方言主题识别
本文介绍了DTeam在VarDial 2019评估活动中为摩尔多瓦与罗马尼亚的交叉主题识别任务提出的解决方案。提出的解决方案是由两个字符级神经网络组成的支持向量机(SVM)集成。第一个网络是由一个嵌入层、三个卷积层和两个全连接层组成的跳格分类模型。第二个网络具有类似的结构,但使用三重损失函数进行训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信