A SAM-SOM family: incorporating spatial access methods into constructive self-organizing maps

E. Cuadros-Vargas, R.A.F. Romero
{"title":"A SAM-SOM family: incorporating spatial access methods into constructive self-organizing maps","authors":"E. Cuadros-Vargas, R.A.F. Romero","doi":"10.1109/IJCNN.2002.1007660","DOIUrl":null,"url":null,"abstract":"Self-organizing maps (SOM) perform similarity information retrieval, but they cannot answer questions like k-nearest neighbors easily. This paper presents a new family of constructive SOM called SAM-SOM family which incorporates spatial access methods to perform more specific queries like k-NN and range queries. Using this family of networks, the patterns have to be presented only once. This approach speeds up dramatically the SOM training process with a minimal number of parameters.","PeriodicalId":382771,"journal":{"name":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2002.1007660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Self-organizing maps (SOM) perform similarity information retrieval, but they cannot answer questions like k-nearest neighbors easily. This paper presents a new family of constructive SOM called SAM-SOM family which incorporates spatial access methods to perform more specific queries like k-NN and range queries. Using this family of networks, the patterns have to be presented only once. This approach speeds up dramatically the SOM training process with a minimal number of parameters.
一个SAM-SOM家族:将空间访问方法纳入建设性自组织地图
自组织地图(SOM)可以进行相似性信息检索,但不能很容易地回答k近邻等问题。本文提出了一种新的建设性SOM族,称为SAM-SOM族,它结合了空间访问方法来执行更具体的查询,如k-NN和范围查询。使用这个网络家族,模式只需要呈现一次。这种方法以最少的参数显著加快了SOM的训练过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信