Iterative Lavrentiev regularization method under a heuristic rule for nonlinear ill-posed operator equations

P. Mahale, Ankit Singh
{"title":"Iterative Lavrentiev regularization method under a heuristic rule for nonlinear ill-posed operator equations","authors":"P. Mahale, Ankit Singh","doi":"10.1553/etna_vol58s450","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the iterative Lavrentiev regularization method for obtaining a stable approximate solution for a nonlinear ill-posed operator equation F (x) = y, where F : D(F ) ⊂ X → X is a nonlinear monotone operator on the Hilbert spaces X . In order to obtain a stable approximate solution using iterative regularization methods, it is important to use a suitable stopping rule to terminate the iterations at the appropriate step. Recently, Qinian Jin and Wei Wang (2018) have proposed a heuristic rule to stop the iterations for the iteratively regularized Gauss-Newton method. The advantage of a heuristic rule over the existing a priori and a posteriori rules is that it does not require accurate information on the noise level, which may not be available or reliable in practical applications. In this paper, we propose a heuristic stopping rule for an iterated Lavrentiev regularization method. We derive error estimates under suitable nonlinearity conditions on the operator F .","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol58s450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the iterative Lavrentiev regularization method for obtaining a stable approximate solution for a nonlinear ill-posed operator equation F (x) = y, where F : D(F ) ⊂ X → X is a nonlinear monotone operator on the Hilbert spaces X . In order to obtain a stable approximate solution using iterative regularization methods, it is important to use a suitable stopping rule to terminate the iterations at the appropriate step. Recently, Qinian Jin and Wei Wang (2018) have proposed a heuristic rule to stop the iterations for the iteratively regularized Gauss-Newton method. The advantage of a heuristic rule over the existing a priori and a posteriori rules is that it does not require accurate information on the noise level, which may not be available or reliable in practical applications. In this paper, we propose a heuristic stopping rule for an iterated Lavrentiev regularization method. We derive error estimates under suitable nonlinearity conditions on the operator F .
非线性不适定算子方程的启发式迭代Lavrentiev正则化方法
本文考虑求解非线性不适定算子方程F (x) = y的稳定近似解的迭代Lavrentiev正则化方法,其中F: D(F)∧x→x是Hilbert空间x上的非线性单调算子。为了利用迭代正则化方法得到稳定的近似解,使用合适的停止规则在适当的步长终止迭代是很重要的。最近,金启年和王伟(2018)为迭代正则化高斯-牛顿方法提出了一种停止迭代的启发式规则。启发式规则相对于现有的先验和后验规则的优点是,它不需要关于噪声水平的准确信息,这些信息在实际应用中可能是不可用的或不可靠的。本文提出了一种迭代Lavrentiev正则化方法的启发式停止规则。在适当的非线性条件下,导出了算子F的误差估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信