Fusing Multimodal Human Expert Data to Uncover Hidden Semantics

GazeIn '14 Pub Date : 2014-11-16 DOI:10.1145/2666642.2666649
Xuan Guo, Qi Yu, Rui Li, Cecilia Ovesdotter Alm, Anne R. Haake
{"title":"Fusing Multimodal Human Expert Data to Uncover Hidden Semantics","authors":"Xuan Guo, Qi Yu, Rui Li, Cecilia Ovesdotter Alm, Anne R. Haake","doi":"10.1145/2666642.2666649","DOIUrl":null,"url":null,"abstract":"Problem solving in complex visual domains involves multiple levels of cognitive processing. Analyzing and representing these cognitive processes requires the elicitation and study of multimodal human data. We have developed methods for extracting experts' visual behaviors and verbal descriptions during medical image inspection. Now we address fusion of these data towards building a novel framework for organizing elements of expertise as a foundation for knowledge-dependent computational systems. In this paper, a multimodal graph-regularized non-negative matrix factorization approach is developed and used to fuse multimodal data collected during medical image inspection. Our experimental results on new data representation demonstrate the effectiveness of the proposed data fusion approach.","PeriodicalId":230150,"journal":{"name":"GazeIn '14","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GazeIn '14","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2666642.2666649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Problem solving in complex visual domains involves multiple levels of cognitive processing. Analyzing and representing these cognitive processes requires the elicitation and study of multimodal human data. We have developed methods for extracting experts' visual behaviors and verbal descriptions during medical image inspection. Now we address fusion of these data towards building a novel framework for organizing elements of expertise as a foundation for knowledge-dependent computational systems. In this paper, a multimodal graph-regularized non-negative matrix factorization approach is developed and used to fuse multimodal data collected during medical image inspection. Our experimental results on new data representation demonstrate the effectiveness of the proposed data fusion approach.
融合多模态人类专家数据揭示隐藏语义
复杂视觉域的问题解决涉及多个层次的认知加工。分析和表示这些认知过程需要对多模态人类数据的启发和研究。我们开发了在医学图像检测过程中提取专家视觉行为和语言描述的方法。现在我们解决这些数据的融合,以建立一个新的框架来组织专业知识元素,作为知识依赖计算系统的基础。本文提出了一种多模态图正则化非负矩阵分解方法,用于医学图像检测过程中采集的多模态数据的融合。我们在新的数据表示上的实验结果证明了所提数据融合方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信