L/sup 2/-density estimation with negative kernels

N. Oudjane, C. Musso
{"title":"L/sup 2/-density estimation with negative kernels","authors":"N. Oudjane, C. Musso","doi":"10.1109/ISPA.2005.195380","DOIUrl":null,"url":null,"abstract":"In this paper, we are interested in density estimation using kernels that can take negative values, also called negative kernels. On the one hand, using negative kernels allows reducing the bias of the approximation, but on the other hand it implies that the resulting approximation can take negative values. To obtain a new approximation which is a probability density, we propose to replace the approximation by its L/sup 2/-projection on the space of L/sup 2/-probability densities. A similar approach has been proposed in I.K. Glad et al. (2003) but, in this paper, we describe how to compute this projection and how to generate random variables from it. This approach can be useful for particle filtering, particularly for the regularization step in regularized particle filters (C. Musso and N. Oudjane, June 1998) or kernel filters (M. Hurzeler and H.R. Kunsch, June 1998).","PeriodicalId":238993,"journal":{"name":"ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005.","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA.2005.195380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we are interested in density estimation using kernels that can take negative values, also called negative kernels. On the one hand, using negative kernels allows reducing the bias of the approximation, but on the other hand it implies that the resulting approximation can take negative values. To obtain a new approximation which is a probability density, we propose to replace the approximation by its L/sup 2/-projection on the space of L/sup 2/-probability densities. A similar approach has been proposed in I.K. Glad et al. (2003) but, in this paper, we describe how to compute this projection and how to generate random variables from it. This approach can be useful for particle filtering, particularly for the regularization step in regularized particle filters (C. Musso and N. Oudjane, June 1998) or kernel filters (M. Hurzeler and H.R. Kunsch, June 1998).
负核的L/sup 2/-密度估计
在本文中,我们感兴趣的是使用可以取负值的核进行密度估计,也称为负核。一方面,使用负核可以减少近似的偏差,但另一方面,它意味着得到的近似可以取负值。为了得到一个新的近似,即概率密度,我们提出用它在L/sup 2/-概率密度空间上的L/sup 2/-投影来代替近似。类似的方法已经在I.K. Glad et al.(2003)中提出,但在本文中,我们描述了如何计算该投影以及如何从中生成随机变量。这种方法可用于粒子滤波,特别是正则化粒子滤波器(C. Musso和N. Oudjane, 1998年6月)或核滤波器(M. Hurzeler和H.R. Kunsch, 1998年6月)中的正则化步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信