1 Optimal Device Sizing for Zero Energy Buildings: Sensitivity of Nonlinear Model to Uncertainties

M. Mehrtash, Ghazaleh Mozafari, Yun Li, Yankai Cao
{"title":"1 Optimal Device Sizing for Zero Energy Buildings: Sensitivity of Nonlinear Model to Uncertainties","authors":"M. Mehrtash, Ghazaleh Mozafari, Yun Li, Yankai Cao","doi":"10.1109/TPEC51183.2021.9384929","DOIUrl":null,"url":null,"abstract":"Buildings, as one of the major final energy consumers, are among key contributors to greenhouse gas emissions. A zero energy building is, by definition, a building that produces as much energy from renewable sources as it consumes yearly. In this paper, we propose a comprehensive device sizing model to find the most cost-optimal size of thermal and electrical devices in a zero energy building. The presence of several technologies (i.e., photovoltaic panel, solar thermal collector, heat pump, combined heat and power, heat storage tank, and battery energy storage) and their practical nonlinear behavior are considered in the proposed model. Then, to investigate the effect of uncertainties (i.e., demand and weather forecasting errors) in the quality of the optimal solution, a sensitivity analysis with respect to the correlation between uncertainties is performed. Finally, to illustrate the advantages of the proposed model, a typical building located on the Vancouver campus of the University of British Columbia is studied.","PeriodicalId":354018,"journal":{"name":"2021 IEEE Texas Power and Energy Conference (TPEC)","volume":"51 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Texas Power and Energy Conference (TPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPEC51183.2021.9384929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Buildings, as one of the major final energy consumers, are among key contributors to greenhouse gas emissions. A zero energy building is, by definition, a building that produces as much energy from renewable sources as it consumes yearly. In this paper, we propose a comprehensive device sizing model to find the most cost-optimal size of thermal and electrical devices in a zero energy building. The presence of several technologies (i.e., photovoltaic panel, solar thermal collector, heat pump, combined heat and power, heat storage tank, and battery energy storage) and their practical nonlinear behavior are considered in the proposed model. Then, to investigate the effect of uncertainties (i.e., demand and weather forecasting errors) in the quality of the optimal solution, a sensitivity analysis with respect to the correlation between uncertainties is performed. Finally, to illustrate the advantages of the proposed model, a typical building located on the Vancouver campus of the University of British Columbia is studied.
1零能耗建筑的最优设备尺寸:非线性模型对不确定性的敏感性
建筑作为主要的最终能源消费者之一,是温室气体排放的主要贡献者之一。根据定义,零能耗建筑是指每年使用可再生能源产生的能量与消耗的能量相当的建筑。在本文中,我们提出了一个综合的器件尺寸模型,以寻找零能耗建筑中最具成本效益的热电器件尺寸。提出的模型考虑了几种技术(即光伏板、太阳能集热器、热泵、热电联产、储热罐和电池储能)的存在及其实际的非线性行为。然后,为了研究不确定性(即需求和天气预报误差)对最优解质量的影响,对不确定性之间的相关性进行敏感性分析。最后,为了说明所提出的模型的优点,以不列颠哥伦比亚大学温哥华校区的典型建筑为例进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信