Annotation Framework for Hate Speech Identification in Tweets: Case Study of Tweets During Kenyan Elections

Edward Ombui, Moses Karani, Lawrence Muchemi
{"title":"Annotation Framework for Hate Speech Identification in Tweets: Case Study of Tweets During Kenyan Elections","authors":"Edward Ombui, Moses Karani, Lawrence Muchemi","doi":"10.23919/ISTAFRICA.2019.8764868","DOIUrl":null,"url":null,"abstract":"Considering the colossal amount of user-generated content on social media, it has become increasingly difficult to monitor hateful content being published on public online spaces, especially during the electioneering periods, particularly in Kenya. In this regard, it is crucial to automate the identification of hate speech in order to manage the volume, variety, veracity and velocity of this content. In this research, we postulate a supervised machine learning approach whereby annotation of the training data set is critical in determining the performance of the trained classifier. Therefore, we develop an annotation framework based on Sternberg’s (2003) hate theory and test its performance in classifying about 5k tweets using 3 human annotators per tweet. Preliminary results indicate an intercoder reliability score of 0.5027 based on Krippendorff’s alpha.","PeriodicalId":420572,"journal":{"name":"2019 IST-Africa Week Conference (IST-Africa)","volume":"249 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IST-Africa Week Conference (IST-Africa)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ISTAFRICA.2019.8764868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Considering the colossal amount of user-generated content on social media, it has become increasingly difficult to monitor hateful content being published on public online spaces, especially during the electioneering periods, particularly in Kenya. In this regard, it is crucial to automate the identification of hate speech in order to manage the volume, variety, veracity and velocity of this content. In this research, we postulate a supervised machine learning approach whereby annotation of the training data set is critical in determining the performance of the trained classifier. Therefore, we develop an annotation framework based on Sternberg’s (2003) hate theory and test its performance in classifying about 5k tweets using 3 human annotators per tweet. Preliminary results indicate an intercoder reliability score of 0.5027 based on Krippendorff’s alpha.
推文中仇恨言论识别的注释框架:肯尼亚选举期间推文的案例研究
考虑到社交媒体上大量用户生成的内容,监控在公共网络空间发布的仇恨内容变得越来越困难,特别是在竞选期间,特别是在肯尼亚。在这方面,为了管理仇恨言论的数量、种类、准确性和传播速度,自动化识别仇恨言论至关重要。在本研究中,我们假设了一种有监督的机器学习方法,其中训练数据集的注释对于确定训练分类器的性能至关重要。因此,我们基于Sternberg(2003)的仇恨理论开发了一个注释框架,并使用3个人工注释器对每条推文进行分类,测试了其性能。初步结果表明,基于Krippendorff 's alpha的互码器可靠性评分为0.5027。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信