Approach to Optimum Performance in Random Spreading CDMA by Linear-Complex LAS Detectors

Yi Sun
{"title":"Approach to Optimum Performance in Random Spreading CDMA by Linear-Complex LAS Detectors","authors":"Yi Sun","doi":"10.1109/CISS.2007.4298299","DOIUrl":null,"url":null,"abstract":"In this paper, we first present a BER upper bound for the family of LAS detectors. Then the upper bound is applied to analyze the performance of local maximum likelihood (LML) detectors in large random spreading CDMA (LRS-CDMA) channels where user number A' and spreading gain N tend to infinity and KIN keeps a constant. The LRS-CDMA channels are shown to possess the LML characteristic. In the regime of K/N < 1/2 - 1/(4ln2) and Nsigma2 equal to a constant where sigma2 is the noise power, an LML point is almost surely a global maximum likelihood (GML) point and the asymptotic multiuser efficiency of all the LML detectors converges almost surely to one. Given a practical CDMA system with fixed finite K and N, we then propose to construct a quasi-LRS-CDMA channel where bits are extended by a factor of B and spread by unit-length BN-chip sequences and each user transmits B extended bits. Simulation results show that in the regime of BK > 1000, K/N < 1.0 and SNR ges 4 dB, while their average per-bit complexity is less than 0.79BK, the LAS detectors can achieve the BER indistinguishable from the large-system limit BER of the GML detector.","PeriodicalId":151241,"journal":{"name":"2007 41st Annual Conference on Information Sciences and Systems","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 41st Annual Conference on Information Sciences and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2007.4298299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we first present a BER upper bound for the family of LAS detectors. Then the upper bound is applied to analyze the performance of local maximum likelihood (LML) detectors in large random spreading CDMA (LRS-CDMA) channels where user number A' and spreading gain N tend to infinity and KIN keeps a constant. The LRS-CDMA channels are shown to possess the LML characteristic. In the regime of K/N < 1/2 - 1/(4ln2) and Nsigma2 equal to a constant where sigma2 is the noise power, an LML point is almost surely a global maximum likelihood (GML) point and the asymptotic multiuser efficiency of all the LML detectors converges almost surely to one. Given a practical CDMA system with fixed finite K and N, we then propose to construct a quasi-LRS-CDMA channel where bits are extended by a factor of B and spread by unit-length BN-chip sequences and each user transmits B extended bits. Simulation results show that in the regime of BK > 1000, K/N < 1.0 and SNR ges 4 dB, while their average per-bit complexity is less than 0.79BK, the LAS detectors can achieve the BER indistinguishable from the large-system limit BER of the GML detector.
线性复LAS检测器在随机扩频CDMA中的最优性能研究
本文首先给出了LAS探测器族的误码率上界。然后应用上界分析了LRS-CDMA (large random spreading CDMA)信道中,当用户数A′和扩频增益N趋于无穷大且KIN保持恒定时,局部极大似然检测器的性能。LRS-CDMA信道具有LML特性。在K/N < 1/2 - 1/(4ln2)和sigma2等于常数(其中sigma2为噪声功率)的情况下,LML点几乎肯定是全局极大似然点,并且所有LML检测器的渐近多用户效率几乎肯定收敛于1。在一个具有固定有限K和N的实际CDMA系统中,我们提出了一种准lrs -CDMA信道,其中比特被扩展为B倍,并由单位长度的bn芯片序列传播,每个用户传输B个扩展比特。仿真结果表明,在BK > 1000, K/N < 1.0,信噪比为4 dB,平均每比特复杂度小于0.79BK的情况下,LAS检测器可以实现与GML检测器的大系统极限误码率难以区分的误码率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信