{"title":"Chapter Three. Basic Idea of Adaptive Control for Single-Input Systems","authors":"Yang Zhu, M. Krstić","doi":"10.1515/9780691203317-007","DOIUrl":null,"url":null,"abstract":"This chapter provides a variety of adaptive predictor control techniques to deal with different uncertainty collections from four basic uncertainties. These include delay, parameter, ODE state, and PDE state. In the presence of a discrete actuator delay that is long and unknown, but when the actuator state is available for measurement, a global adaptive stabilization result is obtainable. In contrast, the problem where the delay value is unknown, and where the actuator state is not measurable at the same time, is not solvable globally, since the problem is not linearly parameterized in the unknown delay. In this case, a local stabilization is feasible, with restrictions on the initial conditions such that not only do the initial values of the ODE and actuator state have to be small, but also the initial value of the delay estimation error has to be small (the delay value is allowed to be large but the initial value of its estimate has to be close to the true value of the delay).","PeriodicalId":201486,"journal":{"name":"Delay-Adaptive Linear Control","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Delay-Adaptive Linear Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/9780691203317-007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This chapter provides a variety of adaptive predictor control techniques to deal with different uncertainty collections from four basic uncertainties. These include delay, parameter, ODE state, and PDE state. In the presence of a discrete actuator delay that is long and unknown, but when the actuator state is available for measurement, a global adaptive stabilization result is obtainable. In contrast, the problem where the delay value is unknown, and where the actuator state is not measurable at the same time, is not solvable globally, since the problem is not linearly parameterized in the unknown delay. In this case, a local stabilization is feasible, with restrictions on the initial conditions such that not only do the initial values of the ODE and actuator state have to be small, but also the initial value of the delay estimation error has to be small (the delay value is allowed to be large but the initial value of its estimate has to be close to the true value of the delay).