A Scalable Parallel Computing Framework for Large-Scale Astrophysical Fluid Dynamics Numerical Simulation

I. Kulikov, I. Chernykh, A. Tchernykh
{"title":"A Scalable Parallel Computing Framework for Large-Scale Astrophysical Fluid Dynamics Numerical Simulation","authors":"I. Kulikov, I. Chernykh, A. Tchernykh","doi":"10.1109/PDCAT46702.2019.00066","DOIUrl":null,"url":null,"abstract":"The numerical simulation of complex astrophysical problems requires high-performance computing due to the large size of the problems and variety of simulated physical processes. In this paper, we present a new framework for the numerical simulation of astrophysical fluid dynamics. It is based on the mechanisms of combining distributed and parallel computing techniques, advanced vectorization for KNL, and Skylake-SP CPU architectures. Our new HydroBox3D framework uses large 3D meshes to solve problems such as the dynamics of stars or galaxies. In our framework, we use computational nodes with a large amount of memory (RAM or Intel Optane in memory mode) for mesh processing and typical computational nodes for the numerical simulation of astrophysical problems. We use MPI both for send/receive operations between computational nodes and for sending processed data for calculations from data nodes. For optimization of calculations, memory, and CPU usage, we use data vectorization, FMA3, and AVX-512 instructions for Intel Xeon Phi 72XX and Intel Xeon Scalable processors. Benchmark results on different CPU and MIC devices show the effectiveness of the proposed solution.","PeriodicalId":166126,"journal":{"name":"2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDCAT46702.2019.00066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The numerical simulation of complex astrophysical problems requires high-performance computing due to the large size of the problems and variety of simulated physical processes. In this paper, we present a new framework for the numerical simulation of astrophysical fluid dynamics. It is based on the mechanisms of combining distributed and parallel computing techniques, advanced vectorization for KNL, and Skylake-SP CPU architectures. Our new HydroBox3D framework uses large 3D meshes to solve problems such as the dynamics of stars or galaxies. In our framework, we use computational nodes with a large amount of memory (RAM or Intel Optane in memory mode) for mesh processing and typical computational nodes for the numerical simulation of astrophysical problems. We use MPI both for send/receive operations between computational nodes and for sending processed data for calculations from data nodes. For optimization of calculations, memory, and CPU usage, we use data vectorization, FMA3, and AVX-512 instructions for Intel Xeon Phi 72XX and Intel Xeon Scalable processors. Benchmark results on different CPU and MIC devices show the effectiveness of the proposed solution.
大型天体物理流体动力学数值模拟的可扩展并行计算框架
复杂天体物理问题的数值模拟由于问题规模大,模拟物理过程多样,需要高性能的计算。本文提出了一个天体物理流体动力学数值模拟的新框架。它基于将分布式和并行计算技术、KNL的高级向量化和Skylake-SP CPU体系结构相结合的机制。我们新的HydroBox3D框架使用大型3D网格来解决诸如恒星或星系动力学等问题。在我们的框架中,我们使用具有大量内存(RAM或内存模式下的Intel Optane)的计算节点进行网格处理,并使用典型的计算节点进行天体物理问题的数值模拟。我们将MPI用于计算节点之间的发送/接收操作,以及为数据节点的计算发送处理过的数据。为了优化计算、内存和CPU使用,我们为英特尔至强Phi 72XX和英特尔至强可扩展处理器使用数据矢量化、FMA3和AVX-512指令。在不同CPU和MIC设备上的基准测试结果表明了所提出的解决方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信