Sparse Autoencoder for Sparse Code Multiple Access

Medini Singh, Deepak Mishra, M. Vanidevi
{"title":"Sparse Autoencoder for Sparse Code Multiple Access","authors":"Medini Singh, Deepak Mishra, M. Vanidevi","doi":"10.1109/ICAIIC51459.2021.9415203","DOIUrl":null,"url":null,"abstract":"In the forthcoming 5G technology, Sparse Code Multiple Access (SCMA) is the most promising scheme that aims at improving spectral efficiency further and providing massive connectivity. The challenge behind implementing SCMA scheme is: constructing optimized codebooks in order to obtain minimum BER while keeping the receiver complexity minimum. To address this problem, we resort to the usage of an efficient deep learning technique, autoencoders, that club the encoder and the decoder part and automatically learn the most optimum codeword that could give the least BER. In this paper, SCMA sparse autoencoder, which is a variant of the autoencoder, is proposed, that has better BER performance than a conventional autoencoder, without paying in terms of computational complexity.","PeriodicalId":432977,"journal":{"name":"2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC51459.2021.9415203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the forthcoming 5G technology, Sparse Code Multiple Access (SCMA) is the most promising scheme that aims at improving spectral efficiency further and providing massive connectivity. The challenge behind implementing SCMA scheme is: constructing optimized codebooks in order to obtain minimum BER while keeping the receiver complexity minimum. To address this problem, we resort to the usage of an efficient deep learning technique, autoencoders, that club the encoder and the decoder part and automatically learn the most optimum codeword that could give the least BER. In this paper, SCMA sparse autoencoder, which is a variant of the autoencoder, is proposed, that has better BER performance than a conventional autoencoder, without paying in terms of computational complexity.
稀疏码多址稀疏自编码器
在即将到来的5G技术中,稀疏码多址(SCMA)是最有前途的方案,旨在进一步提高频谱效率并提供大规模连接。实现SCMA方案所面临的挑战是:构造优化的码本,以获得最小的误码率,同时保持最小的接收复杂度。为了解决这个问题,我们使用了一种高效的深度学习技术,自动编码器,它将编码器和解码器部分结合起来,自动学习可以给出最小误码率的最优码字。本文提出了SCMA稀疏自编码器,它是自编码器的一种变体,具有比传统自编码器更好的误码率性能,而不需要付出计算复杂度的代价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信