Mikhak Samadi, H. Schriemer, S. Ruj, M. Erol-Kantarci
{"title":"Energy Blockchain for Demand Response and Distributed Energy Resource Management","authors":"Mikhak Samadi, H. Schriemer, S. Ruj, M. Erol-Kantarci","doi":"10.1109/SmartGridComm51999.2021.9632326","DOIUrl":null,"url":null,"abstract":"The high impact of demand reduction on the energy grid management and the importance of reducing loss of distributed energy resources (DERs), in addition to the necessity of a secure distributed data storing system motivate us to propose an energy blockchain solution. This paper presents a demand response (DR) solution utilizing energy blockchain to reduce demand, save the extra DERs, and efficiently incorporate customers block mining ability. In this work, a real dataset of customer demand profiles and PV generation in the Ottawa region is used to deploy a DR Stackelberg game between a control agent (CA) and local customers to negotiate demand reduction by integrating the block mining method as DERs saving. This article presents a novel and well-suited consensus algorithm, Proof of Energy Saving (PoES), that is used to incentivize the customers to reduce their demand, discharge their electric vehicle (EV) and maximize their chance for block mining to earn monetary rewards and DER savings. This results in lower peak demand, customer bill reduction, and transforms energy savings into monetary resources. Furthermore, the results show that our proposed consensus algorithm is robust and secure against malicious actions of users.","PeriodicalId":378884,"journal":{"name":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm51999.2021.9632326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The high impact of demand reduction on the energy grid management and the importance of reducing loss of distributed energy resources (DERs), in addition to the necessity of a secure distributed data storing system motivate us to propose an energy blockchain solution. This paper presents a demand response (DR) solution utilizing energy blockchain to reduce demand, save the extra DERs, and efficiently incorporate customers block mining ability. In this work, a real dataset of customer demand profiles and PV generation in the Ottawa region is used to deploy a DR Stackelberg game between a control agent (CA) and local customers to negotiate demand reduction by integrating the block mining method as DERs saving. This article presents a novel and well-suited consensus algorithm, Proof of Energy Saving (PoES), that is used to incentivize the customers to reduce their demand, discharge their electric vehicle (EV) and maximize their chance for block mining to earn monetary rewards and DER savings. This results in lower peak demand, customer bill reduction, and transforms energy savings into monetary resources. Furthermore, the results show that our proposed consensus algorithm is robust and secure against malicious actions of users.