MCMC particle filter-based vehicle tracking method using multiple hypotheses and appearance model

Y. Lim, Dongyoung Kim, Chung-Hee Lee
{"title":"MCMC particle filter-based vehicle tracking method using multiple hypotheses and appearance model","authors":"Y. Lim, Dongyoung Kim, Chung-Hee Lee","doi":"10.1109/IVS.2013.6629618","DOIUrl":null,"url":null,"abstract":"In this study, we propose a multiple vehicle tracking method using multiple hypotheses and the appearance model. The multiple hypotheses are associated with multiple tracks using track-to-multiple hypotheses association method. A target state is estimated using the maximum a posteriori probability estimation method. The posterior probability is proportional to the product of a priori probability and the likelihood that is calculated using similarities of multiple hypotheses and the appearance model. The posterior probability density function is estimated using the Markov chain Monte Carlo particle filter. An optimal posterior target state is determined using a sample with the maximum a posteriori probability. Our experimental results show that the proposed method can improve multiple objects tracking precision as well as multiple object tracking accuracy.","PeriodicalId":251198,"journal":{"name":"2013 IEEE Intelligent Vehicles Symposium (IV)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2013.6629618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this study, we propose a multiple vehicle tracking method using multiple hypotheses and the appearance model. The multiple hypotheses are associated with multiple tracks using track-to-multiple hypotheses association method. A target state is estimated using the maximum a posteriori probability estimation method. The posterior probability is proportional to the product of a priori probability and the likelihood that is calculated using similarities of multiple hypotheses and the appearance model. The posterior probability density function is estimated using the Markov chain Monte Carlo particle filter. An optimal posterior target state is determined using a sample with the maximum a posteriori probability. Our experimental results show that the proposed method can improve multiple objects tracking precision as well as multiple object tracking accuracy.
基于MCMC粒子滤波的多假设和外观模型车辆跟踪方法
在本研究中,我们提出了一种基于多假设和外观模型的多车辆跟踪方法。采用轨迹-多假设关联方法将多个假设与多个轨迹关联起来。采用最大后验概率估计方法对目标状态进行估计。后验概率与先验概率和使用多个假设的相似性和外观模型计算的可能性的乘积成正比。用马尔科夫链蒙特卡罗粒子滤波估计后验概率密度函数。最优后验目标状态是用最大后验概率的样本确定的。实验结果表明,该方法可以提高多目标跟踪精度和多目标跟踪精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信