Inter-Sentence Relation Extraction for Associating Biological Context with Events in Biomedical Texts

Enrique Noriega-Atala, P. Hein, S. S. Thumsi, Zechy Wong, Xia Wang, C. Morrison
{"title":"Inter-Sentence Relation Extraction for Associating Biological Context with Events in Biomedical Texts","authors":"Enrique Noriega-Atala, P. Hein, S. S. Thumsi, Zechy Wong, Xia Wang, C. Morrison","doi":"10.1109/ICDMW.2018.00110","DOIUrl":null,"url":null,"abstract":"We present an analysis of the problem of identifying biological context and associating it with biochemical events in biomedical texts. This constitutes a non-trivial, inter-sentential relation extraction task. We focus on biological context as descriptions of the species, tissue type and cell type that are associated with biochemical events. We describe the properties of an annotated corpus of context-event relations and present and evaluate several classifiers for context-event association trained on syntactic, distance and frequency features.","PeriodicalId":259600,"journal":{"name":"2018 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"05 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2018.00110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We present an analysis of the problem of identifying biological context and associating it with biochemical events in biomedical texts. This constitutes a non-trivial, inter-sentential relation extraction task. We focus on biological context as descriptions of the species, tissue type and cell type that are associated with biochemical events. We describe the properties of an annotated corpus of context-event relations and present and evaluate several classifiers for context-event association trained on syntactic, distance and frequency features.
生物医学文本中生物语境与事件关联的句间关系提取
我们提出了一个问题的分析,识别生物背景,并将其与生物医学文本中的生化事件联系起来。这构成了一个重要的句子间关系提取任务。我们专注于生物背景作为物种,组织类型和细胞类型的描述,与生化事件相关。我们描述了一个注释的上下文-事件关系语料库的属性,并提出并评估了几个基于句法、距离和频率特征训练的上下文-事件关联分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信