Protection policy in networked locations using machine learning and data science approach

S. S. S. Reddy, Ramesh Shahabadkar, Ch Mamatha, P. Chatterjee
{"title":"Protection policy in networked locations using machine learning and data science approach","authors":"S. S. S. Reddy, Ramesh Shahabadkar, Ch Mamatha, P. Chatterjee","doi":"10.1109/ICATCCT.2017.8389140","DOIUrl":null,"url":null,"abstract":"A protection policy employs diverse techniques and mechanisms to sense protection related glitches and coercions in a networked location. The protection policy is big-data focused and services machine learning technique to perform protection analytics using data science. The protection policy performs entity behavioral analytics to sense the protection related glitches and coercions, regardless of whether such glitches/coercions were previously known. The protection policy can include both real-time and group modes for sensing glitches and coercions. By visually presenting diagnostic results scored with jeopardy assessments and auxiliary indication, the protection policy enables network protection administrators to respond to a sensed glitch or coercions, and to take action promptly.","PeriodicalId":123050,"journal":{"name":"2017 3rd International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT)","volume":"159 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 3rd International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICATCCT.2017.8389140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A protection policy employs diverse techniques and mechanisms to sense protection related glitches and coercions in a networked location. The protection policy is big-data focused and services machine learning technique to perform protection analytics using data science. The protection policy performs entity behavioral analytics to sense the protection related glitches and coercions, regardless of whether such glitches/coercions were previously known. The protection policy can include both real-time and group modes for sensing glitches and coercions. By visually presenting diagnostic results scored with jeopardy assessments and auxiliary indication, the protection policy enables network protection administrators to respond to a sensed glitch or coercions, and to take action promptly.
使用机器学习和数据科学方法的网络位置保护策略
保护策略采用多种技术和机制来感知网络位置中与保护相关的故障和强制。该保护策略以大数据为中心,并使用机器学习技术使用数据科学执行保护分析。保护策略执行实体行为分析来感知与保护相关的故障和强制,而不管这些故障/强制之前是否已知。该保护策略可以包括实时和组模式,用于感应故障和矫顽力。通过可视化地呈现带有危险评估和辅助指示的诊断结果,保护策略使网络保护管理员能够对感知到的故障或强制行为做出响应,并迅速采取行动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信