Analisis Sentiment Tweets Berbahasa Sunda Menggunakan Naive Bayes Classifier dengan Seleksi Feature Chi Squared Statistic

Yono Cahyono, Saprudin Saprudin
{"title":"Analisis Sentiment Tweets Berbahasa Sunda Menggunakan Naive Bayes Classifier dengan Seleksi Feature Chi Squared Statistic","authors":"Yono Cahyono, Saprudin Saprudin","doi":"10.32493/informatika.v4i3.3186","DOIUrl":null,"url":null,"abstract":"At present the development of the use of social media in Indonesia is very rapid, in Indonesia there are a variety of regional languages, one of which is the Sundanese language, where some people especially those living in West Java use Sundanese language to express comments, opinions, suggestions, criticisms and others in social media. This information can be used as valuable data for individuals or organizations in decision making. The huge amount of data makes it impossible for humans to read and analyze it manually. Sentiment analysis is the process of classifying opinions, analyzing, understanding, evaluating, emotions and attitudes towards a particular entity such as individuals, organizations, products or services, topics, events, in order to obtain information. The purpose of this research is the Naїve Bayes Classifier (NBC) classification algorithm and Feature Chi Squared Statistics selection method can be used in Sundanese-language tweets sentiment analysis on Twitter social media into positive, negative and neutral categories. Chi Square Statistic feature test results can reduce irrelevant features in the Naïve Bayes Classifier classification process on Sundanese-language tweets with an accuracy of 78.48%.","PeriodicalId":251854,"journal":{"name":"Jurnal Informatika Universitas Pamulang","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Informatika Universitas Pamulang","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32493/informatika.v4i3.3186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

At present the development of the use of social media in Indonesia is very rapid, in Indonesia there are a variety of regional languages, one of which is the Sundanese language, where some people especially those living in West Java use Sundanese language to express comments, opinions, suggestions, criticisms and others in social media. This information can be used as valuable data for individuals or organizations in decision making. The huge amount of data makes it impossible for humans to read and analyze it manually. Sentiment analysis is the process of classifying opinions, analyzing, understanding, evaluating, emotions and attitudes towards a particular entity such as individuals, organizations, products or services, topics, events, in order to obtain information. The purpose of this research is the Naїve Bayes Classifier (NBC) classification algorithm and Feature Chi Squared Statistics selection method can be used in Sundanese-language tweets sentiment analysis on Twitter social media into positive, negative and neutral categories. Chi Square Statistic feature test results can reduce irrelevant features in the Naïve Bayes Classifier classification process on Sundanese-language tweets with an accuracy of 78.48%.
分析情感推文Berbahasa Sunda Menggunakan朴素贝叶斯分类器dengan Seleksi特征卡方统计
目前印度尼西亚使用社交媒体的发展非常迅速,在印度尼西亚有多种区域语言,其中一种是巽他语,一些人特别是生活在西爪哇的人使用巽他语在社交媒体上表达评论、意见、建议、批评等。这些信息可以作为有价值的数据用于个人或组织的决策。庞大的数据量使人类无法手动阅读和分析。情感分析是对个人、组织、产品或服务、话题、事件等特定实体进行意见分类、分析、理解、评价、情感和态度的过程,以获取信息。本研究的目的是利用Naїve贝叶斯分类器(NBC)分类算法和特征卡方统计选择方法将sundese -language tweets在Twitter社交媒体上的情绪分析分为积极、消极和中性三类。在Naïve贝叶斯分类器对巽他语推文的分类过程中,卡方统计特征检验结果可以减少不相关特征,准确率为78.48%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信