An automated new approach in fast text classification (fastText): A case study for Turkish text classification without pre-processing

Birol Kuyumcu, Cüneyt Aksakalli, Selman Delil
{"title":"An automated new approach in fast text classification (fastText): A case study for Turkish text classification without pre-processing","authors":"Birol Kuyumcu, Cüneyt Aksakalli, Selman Delil","doi":"10.1145/3342827.3342828","DOIUrl":null,"url":null,"abstract":"Any Text Classification (TC) problem need pre-processing steps which may affect the classification accuracy. Especially pre-processing steps need substantial effort particularly in agglutinative languages such as Turkish. In this context, a traditional text categorization problem requires pre-processing steps such as tokenization, stop-word removal, lower-case conversion, stemming and feature dimension reduction. Before classification, one or more of these steps are applied to text and then a classifier is trained to evaluate the corresponding precision. Deep neural network classifiers combined with word embedding is one of the solutions to eliminate the pre-processing prerequisites. Another novel approach is fastText word embedding based classifier which was developed by Facebook. In this study, we evaluate a fastText classifier on TTC-3600 Turkish dataset without using any pre-processing steps and present the performance of the algorithm.","PeriodicalId":254461,"journal":{"name":"Proceedings of the 2019 3rd International Conference on Natural Language Processing and Information Retrieval","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 3rd International Conference on Natural Language Processing and Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3342827.3342828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

Any Text Classification (TC) problem need pre-processing steps which may affect the classification accuracy. Especially pre-processing steps need substantial effort particularly in agglutinative languages such as Turkish. In this context, a traditional text categorization problem requires pre-processing steps such as tokenization, stop-word removal, lower-case conversion, stemming and feature dimension reduction. Before classification, one or more of these steps are applied to text and then a classifier is trained to evaluate the corresponding precision. Deep neural network classifiers combined with word embedding is one of the solutions to eliminate the pre-processing prerequisites. Another novel approach is fastText word embedding based classifier which was developed by Facebook. In this study, we evaluate a fastText classifier on TTC-3600 Turkish dataset without using any pre-processing steps and present the performance of the algorithm.
一种自动化的快速文本分类新方法(fastText):土耳其文本分类无预处理的案例研究
任何文本分类(TC)问题都需要预处理步骤,这可能会影响分类的准确性。特别是预处理步骤需要大量的努力,特别是在粘连语言,如土耳其语。在这种情况下,传统的文本分类问题需要预处理步骤,如标记化、停止词去除、小写转换、词干提取和特征降维。在分类之前,将这些步骤中的一个或多个应用于文本,然后训练分类器来评估相应的精度。结合词嵌入的深度神经网络分类器是消除预处理先决条件的解决方案之一。另一种新颖的方法是由Facebook开发的基于词嵌入的fastText分类器。在这项研究中,我们评估了TTC-3600土耳其数据集上的fastText分类器,而不使用任何预处理步骤,并展示了算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信