Irma Amelia Dewi, Lisa Kristiana, A. Darlis, Reza Fadilah Dwiputra
{"title":"Deep Learning RetinaNet based Car Detection for Smart Transportation Network","authors":"Irma Amelia Dewi, Lisa Kristiana, A. Darlis, Reza Fadilah Dwiputra","doi":"10.26760/elkomika.v7i3.570","DOIUrl":null,"url":null,"abstract":"ABSTRAKDeteksi objek yang merupakan salah satu bagian utama dari sistem Smart Transportasion Network (STN) diajukan pada penelitian ini. Penelitian ini menggunakan salah satu model STN yaitu Infrastructure-to-Vehicle (I2V), dimana sistem ini bekerja dengan mendeteksi kendaraan mobil menggunakan model arsitektur RetinaNet dengan backbone Resnet101 dan FPN (Feature Pyramid Network), kemudian hasil deteksi mentrigger VLC transmitter yang terpasang di lampu penerangan jalan mengirimkan sinyal informasi menuju VLC receiver yang dipasang di mobil. Pada tahap proses training, jumlah dataset mobil yang digunakan adalah sekitar 1600 image dan 400 validation image serta pengulangan proses sebanyak 100 epoch. Berdasarkan 50 kali pengujian pada image test, diperoleh nilai precision mencapai 86%, nilai recall mencapai 85% dan f1-score mencapai 84%.Kata kunci: Object detection, RetinaNet, Resnet101, STN, VLC, I2V ABSTRACTObject detection is one of the main part in Smart Transportation Network (STN) system proposed in this research. This research used one of the STN models, namely Infrastructure-to-Vehicle (I2V), a system works by detecting car using RetinaNet architecture model with ResNet 101 and FPN (Feature Pyramid Network) as backbone, then the detection result triggers VLC transmitter set up on the street lighting to transmit information signal to the VLC receiver which set up in the car. At the training process stage, the number of car datasets is approximately 1600 images, 400 validation images and repetition of processes about 100 epochs. Based on the 50 times testing process on a image test, it is obtained 86% of a precision value, by reaching 85% of recall value, and 84% of f1-score. Keywords: Object detection, RetinaNet, Resnet101, STN, VLC, I2V","PeriodicalId":344430,"journal":{"name":"ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26760/elkomika.v7i3.570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
ABSTRAKDeteksi objek yang merupakan salah satu bagian utama dari sistem Smart Transportasion Network (STN) diajukan pada penelitian ini. Penelitian ini menggunakan salah satu model STN yaitu Infrastructure-to-Vehicle (I2V), dimana sistem ini bekerja dengan mendeteksi kendaraan mobil menggunakan model arsitektur RetinaNet dengan backbone Resnet101 dan FPN (Feature Pyramid Network), kemudian hasil deteksi mentrigger VLC transmitter yang terpasang di lampu penerangan jalan mengirimkan sinyal informasi menuju VLC receiver yang dipasang di mobil. Pada tahap proses training, jumlah dataset mobil yang digunakan adalah sekitar 1600 image dan 400 validation image serta pengulangan proses sebanyak 100 epoch. Berdasarkan 50 kali pengujian pada image test, diperoleh nilai precision mencapai 86%, nilai recall mencapai 85% dan f1-score mencapai 84%.Kata kunci: Object detection, RetinaNet, Resnet101, STN, VLC, I2V ABSTRACTObject detection is one of the main part in Smart Transportation Network (STN) system proposed in this research. This research used one of the STN models, namely Infrastructure-to-Vehicle (I2V), a system works by detecting car using RetinaNet architecture model with ResNet 101 and FPN (Feature Pyramid Network) as backbone, then the detection result triggers VLC transmitter set up on the street lighting to transmit information signal to the VLC receiver which set up in the car. At the training process stage, the number of car datasets is approximately 1600 images, 400 validation images and repetition of processes about 100 epochs. Based on the 50 times testing process on a image test, it is obtained 86% of a precision value, by reaching 85% of recall value, and 84% of f1-score. Keywords: Object detection, RetinaNet, Resnet101, STN, VLC, I2V
智能运输网络(STN)系统的主要部分被提交到本研究中。这项研究使用Infrastructure-to-Vehicle (I2V模型之一walk),这个系统的运作方式通过探测车辆车在哪里使用建筑RetinaNet模型Resnet101骨干和FPN (Feature金字塔Network),然后mentrigger检测结果的VLC发射器安装在发送信号信息接受者的VLC道路照明的灯安装在车里。在培训过程中,采用的汽车数据库数量约为1600种形象和400种验证形象以及100种过程的重复。根据图像测试的50次测试,precision值达到了86%,recall值达到85%,f1分数达到84%。关键词:目标探测、视网膜探测、Resnet101、STN、VLC、I2V abstracbject检测是智能运输网络(STN)的主要部分之一。这个研究过去一号models of the walk, namely Infrastructure-to-Vehicle (I2V), a系统工作由detecting汽车用RetinaNet模型架构ResNet 101和FPN网络(Feature金字塔)美国脊梁,然后《detection论点triggers VLC发射器set up on the street照明信号传输资讯网向境VLC接收器哪种设置车。在培训阶段,汽车数据数据数据接近1600幅图像,400个验证和重复的过程约为100埃波克斯。根据50次形象测试结果,它包含了86%的价值,回收85%的价值,以及84%的f1分数。Keywords:目标探测,视网膜探测,Resnet101, STN, VLC, I2V