Near memory data structure rearrangement

M. Gokhale, G. S. Lloyd, C. Hajas
{"title":"Near memory data structure rearrangement","authors":"M. Gokhale, G. S. Lloyd, C. Hajas","doi":"10.1145/2818950.2818986","DOIUrl":null,"url":null,"abstract":"As CPU core counts continue to increase, the gap between compute power and available memory bandwidth has widened. A larger and deeper cache hierarchy benefits locality-friendly computation, but offers limited improvement to irregular, data intensive applications. In this work we explore a novel approach to accelerating these applications through in-memory data restructuring. Unlike other proposed processing-in-memory architectures, the rearrangement hardware performs data reduction, not compute offload. Using a custom FPGA emulator, we quantitatively evaluate performance and energy benefits of near-memory hardware structures that dynamically restructure in-memory data to cache-friendly layout, minimizing wasted memory bandwidth. Our results on representative irregular benchmarks using the Micron Hybrid Memory Cube memory model show speedup, bandwidth savings, and energy reduction. We present an API for the near-memory accelerator and describe the interaction between the CPU and the rearrangement hardware with application examples. The merits of an SRAM vs. a DRAM scratchpad buffer for rearranged data are explored.","PeriodicalId":389462,"journal":{"name":"Proceedings of the 2015 International Symposium on Memory Systems","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 International Symposium on Memory Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2818950.2818986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

As CPU core counts continue to increase, the gap between compute power and available memory bandwidth has widened. A larger and deeper cache hierarchy benefits locality-friendly computation, but offers limited improvement to irregular, data intensive applications. In this work we explore a novel approach to accelerating these applications through in-memory data restructuring. Unlike other proposed processing-in-memory architectures, the rearrangement hardware performs data reduction, not compute offload. Using a custom FPGA emulator, we quantitatively evaluate performance and energy benefits of near-memory hardware structures that dynamically restructure in-memory data to cache-friendly layout, minimizing wasted memory bandwidth. Our results on representative irregular benchmarks using the Micron Hybrid Memory Cube memory model show speedup, bandwidth savings, and energy reduction. We present an API for the near-memory accelerator and describe the interaction between the CPU and the rearrangement hardware with application examples. The merits of an SRAM vs. a DRAM scratchpad buffer for rearranged data are explored.
近内存数据结构重排
随着CPU核数的不断增加,计算能力和可用内存带宽之间的差距已经扩大。更大和更深的缓存层次结构有利于位置友好型计算,但对不规则的数据密集型应用程序的改进有限。在这项工作中,我们探索了一种通过内存中的数据重构来加速这些应用程序的新方法。与其他提出的内存处理体系结构不同,重排硬件执行数据减少,而不是计算卸载。使用定制的FPGA仿真器,我们定量地评估了近内存硬件结构的性能和能源效益,该结构动态地将内存中的数据重构为缓存友好的布局,最大限度地减少了内存带宽的浪费。我们使用Micron Hybrid Memory Cube内存模型对具有代表性的不规则基准测试进行了测试,结果显示加速、带宽节省和能耗降低。提出了一种近内存加速器的API,并通过应用实例描述了CPU与重排硬件之间的交互。对SRAM与DRAM的优点进行了探讨,以重新排列数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信