Ke Li, Dezi Li, L. Gao, Zuquan Weng, Mingjie Zheng, Youwu He, Zhifang Li
{"title":"Application of optical coherence tomography for morphological change of Staphylococcus during reproduction","authors":"Ke Li, Dezi Li, L. Gao, Zuquan Weng, Mingjie Zheng, Youwu He, Zhifang Li","doi":"10.1117/12.2604723","DOIUrl":null,"url":null,"abstract":"Optical coherence tomography (OCT) is a biomedical imaging technology that uses interference information generated by two light waves to measure and evaluate biological tissues. Because of its high sensitivity, high resolution, and non-destructive testing, it is widely used in various fields. In this paper, OCT is used to detect and evaluate the reproduction of the three bacteria. At the same time, we also use a 20-fold objective lens to observe the morphology of the three bacteria at the position of the sample arm of the OCT. In the experiment, three groups of experimental data were collected, which were pictures collected after two hours, four hours, and five hours of bacterial culture. From the experimental data, the morphology and colony reproduction changes of the three bacteria can be observed; after 4 hours of reproduction, the morphology of E. coli and aeruginosa can be observed; Morphological structure of the three bacteria could be observed after 5 hours of reproduction; through the three-dimensional reconstruction of the experimental data, the three-dimensional morphology of the bacteria can be seen more clearly, which is more conducive to the identification of bacterial species. Experimental results show that OCT can be used to detect bacterial organisms on the order of micrometers, and can observe the reproduction process and morphology of bacteria in different periods, to identify bacterial species. This is of great help in the non-invasive identification of bacterial types in clinical applications of biomedicine.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2604723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Optical coherence tomography (OCT) is a biomedical imaging technology that uses interference information generated by two light waves to measure and evaluate biological tissues. Because of its high sensitivity, high resolution, and non-destructive testing, it is widely used in various fields. In this paper, OCT is used to detect and evaluate the reproduction of the three bacteria. At the same time, we also use a 20-fold objective lens to observe the morphology of the three bacteria at the position of the sample arm of the OCT. In the experiment, three groups of experimental data were collected, which were pictures collected after two hours, four hours, and five hours of bacterial culture. From the experimental data, the morphology and colony reproduction changes of the three bacteria can be observed; after 4 hours of reproduction, the morphology of E. coli and aeruginosa can be observed; Morphological structure of the three bacteria could be observed after 5 hours of reproduction; through the three-dimensional reconstruction of the experimental data, the three-dimensional morphology of the bacteria can be seen more clearly, which is more conducive to the identification of bacterial species. Experimental results show that OCT can be used to detect bacterial organisms on the order of micrometers, and can observe the reproduction process and morphology of bacteria in different periods, to identify bacterial species. This is of great help in the non-invasive identification of bacterial types in clinical applications of biomedicine.