Video event detection using auto-associative neural network and incremental SVM models

M. Chakroun, A. Wali, Yassine Aribi, A. Alimi
{"title":"Video event detection using auto-associative neural network and incremental SVM models","authors":"M. Chakroun, A. Wali, Yassine Aribi, A. Alimi","doi":"10.1109/ISDA.2015.7489178","DOIUrl":null,"url":null,"abstract":"In this paper a new approach to video event detection is presented. This approach is based on HOG/HOF features optimized by an auto-associative neural network models for feature reduction and an incremental SVM model for event classification. This auto-associative neural network models are frequently used to reduce the size of feature vectors. In our approach, each event is modeled by a set of states, and each state is represented by a learning model containing a positive class (event) and a negative class (non-event). Experiments on real video sequences have shown encouraging results.","PeriodicalId":196743,"journal":{"name":"2015 15th International Conference on Intelligent Systems Design and Applications (ISDA)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 15th International Conference on Intelligent Systems Design and Applications (ISDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2015.7489178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper a new approach to video event detection is presented. This approach is based on HOG/HOF features optimized by an auto-associative neural network models for feature reduction and an incremental SVM model for event classification. This auto-associative neural network models are frequently used to reduce the size of feature vectors. In our approach, each event is modeled by a set of states, and each state is represented by a learning model containing a positive class (event) and a negative class (non-event). Experiments on real video sequences have shown encouraging results.
基于自关联神经网络和增量支持向量机模型的视频事件检测
本文提出了一种新的视频事件检测方法。该方法基于HOG/HOF特征,通过自关联神经网络模型进行特征约简和增量支持向量机模型进行事件分类。这种自关联神经网络模型经常用于减小特征向量的大小。在我们的方法中,每个事件由一组状态建模,每个状态由一个学习模型表示,该模型包含一个正类(事件)和一个负类(非事件)。在真实视频序列上的实验结果令人鼓舞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信