Fast integral equation method for metasurface antennas

F. Caminita, E. Martini, G. Minatti, S. Maci
{"title":"Fast integral equation method for metasurface antennas","authors":"F. Caminita, E. Martini, G. Minatti, S. Maci","doi":"10.1109/URSI-EMTS.2016.7571431","DOIUrl":null,"url":null,"abstract":"In this paper, we describe an efficient method for the full-wave simulation of printed antennas based on metasurfaces whose texturing is realized by means of elliptical patches. The method is based on the fast solution of an integral equation discretized by using the method of moment with only two entire domain basis functions for each elliptical patch. The two-dimensional version of the Fast Multipole method is introduced to accelerate the solution of the linear system derived from the full-wave analysis method. Numerical results are provided to demonstrate the effectiveness of the proposed approach.","PeriodicalId":400853,"journal":{"name":"2016 URSI International Symposium on Electromagnetic Theory (EMTS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 URSI International Symposium on Electromagnetic Theory (EMTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URSI-EMTS.2016.7571431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we describe an efficient method for the full-wave simulation of printed antennas based on metasurfaces whose texturing is realized by means of elliptical patches. The method is based on the fast solution of an integral equation discretized by using the method of moment with only two entire domain basis functions for each elliptical patch. The two-dimensional version of the Fast Multipole method is introduced to accelerate the solution of the linear system derived from the full-wave analysis method. Numerical results are provided to demonstrate the effectiveness of the proposed approach.
超表面天线的快速积分方程法
本文提出了一种基于超表面的印刷天线全波仿真方法,超表面的纹理化是通过椭圆贴片实现的。该方法基于矩量法离散的积分方程的快速求解,每个椭圆块只有两个整域基函数。引入二维快速多极子方法,加速求解全波法导出的线性系统。数值结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信