A study of fixed points and hopf bifurcation of hindmarsh-rose model

{"title":"A study of fixed points and hopf bifurcation of hindmarsh-rose model","authors":"","doi":"10.37550/tdmu.ejs/2020.01.002","DOIUrl":null,"url":null,"abstract":"In this article, a class of Hindmarsh-Rose model is studied. First, all necessary conditions for the parameters of system are found in order to have one stable fixed point which presents the resting state for this famous model. After that, using the Hopf’s theorem proofs analytically the existence of a Hopf bifurcation, which is a critical point where a system’s stability switches and a periodic solution arises. More precisely, it is a local bifurcation in which a fixed point of a dynamical system loses stability, as a pair of complex conjugate eigenvalues cross the complex plane imaginary axis. Moreover, with the suitable assumptions for the dynamical system, a small-amplitude limit cycle branches from the fixed point","PeriodicalId":383627,"journal":{"name":"Thu Dau Mot University Journal of Science","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thu Dau Mot University Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37550/tdmu.ejs/2020.01.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, a class of Hindmarsh-Rose model is studied. First, all necessary conditions for the parameters of system are found in order to have one stable fixed point which presents the resting state for this famous model. After that, using the Hopf’s theorem proofs analytically the existence of a Hopf bifurcation, which is a critical point where a system’s stability switches and a periodic solution arises. More precisely, it is a local bifurcation in which a fixed point of a dynamical system loses stability, as a pair of complex conjugate eigenvalues cross the complex plane imaginary axis. Moreover, with the suitable assumptions for the dynamical system, a small-amplitude limit cycle branches from the fixed point
hindmarsh-rose模型的不动点和hopf分岔研究
本文研究了一类Hindmarsh-Rose模型。首先,找到系统参数的所有必要条件,使其有一个稳定的不动点,该不动点表示该著名模型的静息状态。然后,利用Hopf定理解析证明了Hopf分岔的存在性,该分岔是系统稳定性切换和周期解产生的临界点。更准确地说,它是一个局部分岔,其中一个动力系统的不动点失去稳定性,作为一对复共轭特征值穿过复平面虚轴。此外,在适当的动力系统假设下,一个小振幅极限环从不动点出发
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信