On Tuza's conjecture for graphs with treewidth at most 6

F. Botler, Cristina G. Fernandes, Juan Gutiérrez
{"title":"On Tuza's conjecture for graphs with treewidth at most 6","authors":"F. Botler, Cristina G. Fernandes, Juan Gutiérrez","doi":"10.5753/ETC.2018.3141","DOIUrl":null,"url":null,"abstract":"Tuza (1981) conjectured that the size τ (G) of a minimum set of edges that meets every triangle of a graph G is at most twice the size ν(G) of a maximum set of edge-disjoint triangles of G. In this paper we verify this conjecture for graphs with treewidth at most 6. In this paper, all graphs considered are simple and the notation and terminology are standard. A triangle transversal of a graph G is a set of edges of G whose deletion results in a triangle-free graph; and a triangle packing of G is a set of edge-disjoint triangles of G. We denote by τ (G) (resp. ν(G)) the size of a minimum triangle transversal (resp. triangle packing) of G. In [Tuza 1981] the following conjecture was posed: Conjecture (Tuza, 1981). For every graph G, we have τ (G) ≤ 2ν(G).","PeriodicalId":315906,"journal":{"name":"Anais do Encontro de Teoria da Computação (ETC)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do Encontro de Teoria da Computação (ETC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/ETC.2018.3141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Tuza (1981) conjectured that the size τ (G) of a minimum set of edges that meets every triangle of a graph G is at most twice the size ν(G) of a maximum set of edge-disjoint triangles of G. In this paper we verify this conjecture for graphs with treewidth at most 6. In this paper, all graphs considered are simple and the notation and terminology are standard. A triangle transversal of a graph G is a set of edges of G whose deletion results in a triangle-free graph; and a triangle packing of G is a set of edge-disjoint triangles of G. We denote by τ (G) (resp. ν(G)) the size of a minimum triangle transversal (resp. triangle packing) of G. In [Tuza 1981] the following conjecture was posed: Conjecture (Tuza, 1981). For every graph G, we have τ (G) ≤ 2ν(G).
关于图宽度不超过6的图的图扎猜想
Tuza(1981)推测,满足图G的每个三角形的最小边集的大小τ (G)最多是G的最大边不相交三角形集的大小ν(G)的两倍。本文对树宽最多为6的图验证了这一猜想。本文所考虑的图都是简单的,符号和术语都是标准的。图G的三角形截线是G的边的集合,删除G的边会得到无三角形图;而G的三角形填充是G的边不相交三角形的集合,我们用τ (G)表示。ν(G))最小三角形截线的大小(p = 1)。在[Tuza 1981]中,提出了以下猜想:猜想(Tuza, 1981)。对于每一个图G,我们有τ (G)≤2ν(G)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信