Forecasting Unemployment Rates with International Factors

Pablo M. Pincheira, Ana María Hernández
{"title":"Forecasting Unemployment Rates with International Factors","authors":"Pablo M. Pincheira, Ana María Hernández","doi":"10.2139/ssrn.3510597","DOIUrl":null,"url":null,"abstract":"In this paper we study international linkages when forecasting unemployment rates in a sample of 24 OECD economies. We propose a Global Unemployment Factor (GUF) and test its predictive ability considering in-sample and out-of-sample exercises. Our main results indicate that the predictive ability of the GUF is heterogeneous across countries. In-sample results are statistically significant for Austria, Belgium, Czech Republic, Finland, France, Ireland, The Netherlands, Portugal, Slovenia, Sweden and United States. Robust statistically significant out-of-sample results are found for Belgium, Czech Republic, France, The Netherlands, Slovenia, Sweden and the United States. This means that the inclusion of the GUF adds valuable information to predict domestic unemployment rates, at least for these last seven countries.","PeriodicalId":332226,"journal":{"name":"USC Marshall School of Business Research Paper Series","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"USC Marshall School of Business Research Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3510597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we study international linkages when forecasting unemployment rates in a sample of 24 OECD economies. We propose a Global Unemployment Factor (GUF) and test its predictive ability considering in-sample and out-of-sample exercises. Our main results indicate that the predictive ability of the GUF is heterogeneous across countries. In-sample results are statistically significant for Austria, Belgium, Czech Republic, Finland, France, Ireland, The Netherlands, Portugal, Slovenia, Sweden and United States. Robust statistically significant out-of-sample results are found for Belgium, Czech Republic, France, The Netherlands, Slovenia, Sweden and the United States. This means that the inclusion of the GUF adds valuable information to predict domestic unemployment rates, at least for these last seven countries.
利用国际因素预测失业率
在本文中,我们在预测24个经合组织经济体的失业率时研究了国际联系。我们提出了一个全球失业因子(GUF),并考虑样本内和样本外练习测试其预测能力。我们的主要结果表明,GUF的预测能力在各国之间存在差异。奥地利、比利时、捷克共和国、芬兰、法国、爱尔兰、荷兰、葡萄牙、斯洛文尼亚、瑞典和美国的样本内结果具有统计学意义。比利时、捷克共和国、法国、荷兰、斯洛文尼亚、瑞典和美国的样本外结果具有统计学意义。这意味着,纳入GUF为预测国内失业率增加了宝贵的信息,至少对这七个国家而言是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信