Application of artificial neural network for modelling of discharge inception voltage

S. Ghosh, N. Kishore
{"title":"Application of artificial neural network for modelling of discharge inception voltage","authors":"S. Ghosh, N. Kishore","doi":"10.1109/CEIDP.1997.641122","DOIUrl":null,"url":null,"abstract":"The present work attempts to apply artificial neural networks (ANNs) with supervised learning for modelling of discharge inception voltage and stress based on different void parameters. The void depth and gas pressure are the prime considerations of this model. The requisite training data are obtained from experimental studies, published in the literature. Detailed studies are carried out to determine the ANN parameters which give the best results. The results obtained from the ANN are found to be correct within a few % indicating its effectiveness as an efficient tool in estimation.","PeriodicalId":176239,"journal":{"name":"IEEE 1997 Annual Report Conference on Electrical Insulation and Dielectric Phenomena","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE 1997 Annual Report Conference on Electrical Insulation and Dielectric Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEIDP.1997.641122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The present work attempts to apply artificial neural networks (ANNs) with supervised learning for modelling of discharge inception voltage and stress based on different void parameters. The void depth and gas pressure are the prime considerations of this model. The requisite training data are obtained from experimental studies, published in the literature. Detailed studies are carried out to determine the ANN parameters which give the best results. The results obtained from the ANN are found to be correct within a few % indicating its effectiveness as an efficient tool in estimation.
人工神经网络在放电起始电压建模中的应用
本研究尝试应用具有监督学习的人工神经网络(ann)对基于不同空穴参数的放电起始电压和应力进行建模。孔隙深度和气体压力是该模型的主要考虑因素。必要的训练数据是从实验研究中获得的,发表在文献中。通过详细的研究,确定了能获得最佳效果的人工神经网络参数。从人工神经网络得到的结果被发现是正确的在几个百分点,表明它是一个有效的估计工具的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信