Mining discriminative adjectives and prepositions for natural scene recognition

Bangpeng Yao, Juan Carlos Niebles, Li Fei-Fei
{"title":"Mining discriminative adjectives and prepositions for natural scene recognition","authors":"Bangpeng Yao, Juan Carlos Niebles, Li Fei-Fei","doi":"10.1109/CVPRW.2009.5204222","DOIUrl":null,"url":null,"abstract":"This paper presents a method that considers not only patch appearances, but also patch relationships in the form of adjectives and prepositions for natural scene recognition. Most of the existing scene categorization approaches only use patch appearances or co-occurrence of patch appearances to determine the scene categories, but the relationships among patches remain ignored. Those relationships are, however, critical for recognition and understanding. For example, a `beach' scene can be characterized by a `sky' region above `sand', and a `water' region between `sky' and `sand'. We believe that exploiting such relations between image regions can improve scene recognition. In our approach, each image is represented as a spatial pyramid, from which we obtain a collection of patch appearances with spatial layout information. We apply a feature mining approach to get discriminative patch combinations. The mined patch combinations can be interpreted as adjectives or prepositions, which are used for scene understanding and recognition. Experimental results on a fifteen class scene dataset show that our approach achieves competitive state-of-the-art recognition accuracy, while providing a rich description of the scene classes in terms of the mined adjectives and prepositions.","PeriodicalId":431981,"journal":{"name":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2009.5204222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents a method that considers not only patch appearances, but also patch relationships in the form of adjectives and prepositions for natural scene recognition. Most of the existing scene categorization approaches only use patch appearances or co-occurrence of patch appearances to determine the scene categories, but the relationships among patches remain ignored. Those relationships are, however, critical for recognition and understanding. For example, a `beach' scene can be characterized by a `sky' region above `sand', and a `water' region between `sky' and `sand'. We believe that exploiting such relations between image regions can improve scene recognition. In our approach, each image is represented as a spatial pyramid, from which we obtain a collection of patch appearances with spatial layout information. We apply a feature mining approach to get discriminative patch combinations. The mined patch combinations can be interpreted as adjectives or prepositions, which are used for scene understanding and recognition. Experimental results on a fifteen class scene dataset show that our approach achieves competitive state-of-the-art recognition accuracy, while providing a rich description of the scene classes in terms of the mined adjectives and prepositions.
自然场景识别中区别性形容词和介词的挖掘
本文提出了一种既考虑补丁外观,又考虑形容词和介词形式的补丁关系的自然场景识别方法。现有的场景分类方法大多只使用补丁外观或补丁外观的共现来确定场景类别,而忽略了补丁之间的关系。然而,这些关系对于认识和理解至关重要。例如,“海滩”场景的特征可以是“沙滩”上方的“天空”区域,“天空”和“沙滩”之间的“水”区域。我们相信利用图像区域之间的这种关系可以提高场景识别。在我们的方法中,每张图像都被表示为一个空间金字塔,从中我们获得了具有空间布局信息的斑块外观的集合。我们使用特征挖掘方法来获得判别补丁组合。挖掘的斑块组合可以被解释为形容词或介词,用于场景理解和识别。在15类场景数据集上的实验结果表明,我们的方法达到了具有竞争力的最先进的识别精度,同时根据挖掘的形容词和介词提供了丰富的场景类别描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信