Image processing segmentation algorithms evaluation through implementation choices

P. Vizza, Mattia Cannistrà, R. Giancotti, P. Veltri
{"title":"Image processing segmentation algorithms evaluation through implementation choices","authors":"P. Vizza, Mattia Cannistrà, R. Giancotti, P. Veltri","doi":"10.1145/3535508.3545593","DOIUrl":null,"url":null,"abstract":"The processing of medical images is gaining an important role to allow an increasingly accurate diagnosis, essential for chronic diseases identification and treatment. We focus on image processing techniques, such as segmentation ones, and we report implementation experiences and tests in different programming languages. Results regard the use and implementation of K-means algorithm to analyze T1-weighted MRI images regarding 233 subjects. Dataset refers to on line available one containing images referred to three different brain tumors (meningioma, glioma and pituitary tumor). We report the results of implementing the K-means algorithm by using two different programming languages, Java and Octave, measuring different performances.","PeriodicalId":354504,"journal":{"name":"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3535508.3545593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The processing of medical images is gaining an important role to allow an increasingly accurate diagnosis, essential for chronic diseases identification and treatment. We focus on image processing techniques, such as segmentation ones, and we report implementation experiences and tests in different programming languages. Results regard the use and implementation of K-means algorithm to analyze T1-weighted MRI images regarding 233 subjects. Dataset refers to on line available one containing images referred to three different brain tumors (meningioma, glioma and pituitary tumor). We report the results of implementing the K-means algorithm by using two different programming languages, Java and Octave, measuring different performances.
通过对图像处理分割算法的评价实现选择
医学图像的处理正在获得一个重要的作用,允许越来越准确的诊断,至关重要的慢性疾病的识别和治疗。我们着重于图像处理技术,如分割技术,并报告了在不同编程语言中的实现经验和测试。结果采用K-means算法对233名受试者的t1加权MRI图像进行了分析。数据集指的是在线可用的包含三种不同脑肿瘤(脑膜瘤、胶质瘤和垂体瘤)的图像的数据集。我们报告了使用两种不同的编程语言(Java和Octave)实现K-means算法的结果,测量了不同的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信