jVMC: Versatile and performant variational Monte Carlo leveraging automated differentiation and GPU acceleration

M. Schmitt, M. Reh
{"title":"jVMC: Versatile and performant variational Monte Carlo leveraging automated differentiation and GPU acceleration","authors":"M. Schmitt, M. Reh","doi":"10.21468/SciPostPhysCodeb.2","DOIUrl":null,"url":null,"abstract":"The introduction of Neural Quantum States (NQS) has recently given a new twist to variational Monte Carlo (VMC). The ability to systematically reduce the bias of the wave function ansatz renders the approach widely applicable. However, performant implementations are crucial to reach the numerical state of the art. Here, we present a Python codebase that supports arbitrary NQS architectures and model Hamiltonians. Additionally leveraging automatic differentiation, just-in-time compilation to accelerators, and distributed computing, it is designed to facilitate the composition of efficient NQS algorithms.","PeriodicalId":430271,"journal":{"name":"SciPost Physics Codebases","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SciPost Physics Codebases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21468/SciPostPhysCodeb.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The introduction of Neural Quantum States (NQS) has recently given a new twist to variational Monte Carlo (VMC). The ability to systematically reduce the bias of the wave function ansatz renders the approach widely applicable. However, performant implementations are crucial to reach the numerical state of the art. Here, we present a Python codebase that supports arbitrary NQS architectures and model Hamiltonians. Additionally leveraging automatic differentiation, just-in-time compilation to accelerators, and distributed computing, it is designed to facilitate the composition of efficient NQS algorithms.
jVMC:多功能和性能变分蒙特卡罗利用自动微分和GPU加速
神经量子态(NQS)的引入最近给变分蒙特卡罗(VMC)带来了新的变化。系统地降低波函数分析偏差的能力使该方法得到广泛应用。然而,性能实现对于达到数字技术水平至关重要。在这里,我们提供了一个Python代码库,它支持任意的NQS架构和模型hamilton。此外,利用自动区分,及时编译加速器和分布式计算,它旨在促进高效NQS算法的组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信