Adaptive hybrid Particle Swarm Optimization-Gravitational Search Algorithm for fuzzy controller tuning

R. Precup, Radu-Codrut David, A. Stînean, M. Radac, E. Petriu
{"title":"Adaptive hybrid Particle Swarm Optimization-Gravitational Search Algorithm for fuzzy controller tuning","authors":"R. Precup, Radu-Codrut David, A. Stînean, M. Radac, E. Petriu","doi":"10.1109/INISTA.2014.6873591","DOIUrl":null,"url":null,"abstract":"This paper introduces an innovative adaptive hybrid Particle Swarm Optimization (PSO)-Gravitational Search Algorithm (GSA) dedicated to the optimal tuning of Takagi-Sugeno-Kang PI-fuzzy controllers (T-S-K PI-FCs). The adaptive hybrid PSO-GSA is comprised from five stages, which support the solving of optimization problems with objective functions that depend on the control error and on the output sensitivity function, and the variables of the objective functions are the fuzzy controller tuning parameters. The adaptive hybrid PSO-GSA is included in the controller tuning to offer control systems with T-S-K PI-FCs that ensure a reduced process parametric sensitivity. Digital simulation and experimental results are given to validate the fuzzy controller tuning in a laboratory nonlinear servo system application.","PeriodicalId":339652,"journal":{"name":"2014 IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) Proceedings","volume":"221 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INISTA.2014.6873591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper introduces an innovative adaptive hybrid Particle Swarm Optimization (PSO)-Gravitational Search Algorithm (GSA) dedicated to the optimal tuning of Takagi-Sugeno-Kang PI-fuzzy controllers (T-S-K PI-FCs). The adaptive hybrid PSO-GSA is comprised from five stages, which support the solving of optimization problems with objective functions that depend on the control error and on the output sensitivity function, and the variables of the objective functions are the fuzzy controller tuning parameters. The adaptive hybrid PSO-GSA is included in the controller tuning to offer control systems with T-S-K PI-FCs that ensure a reduced process parametric sensitivity. Digital simulation and experimental results are given to validate the fuzzy controller tuning in a laboratory nonlinear servo system application.
模糊控制器自适应混合粒子群优化-引力搜索算法
本文介绍了一种创新的自适应混合粒子群优化(PSO)-引力搜索算法(GSA),用于对Takagi-Sugeno-Kang pi -模糊控制器(T-S-K pi - fc)进行最优整定。该自适应混合PSO-GSA分为5个阶段,支持求解目标函数依赖于控制误差和输出灵敏度函数的优化问题,目标函数的变量为模糊控制器整定参数。自适应混合PSO-GSA包含在控制器调谐中,以提供具有T-S-K pi - fc的控制系统,确保降低过程参数灵敏度。给出了数字仿真和实验结果,验证了模糊控制器整定在实验室非线性伺服系统中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信