Face verification using local binary patterns and generic model adaptation

Elhocine Boutellaa, F. Harizi, Messaoud Bengherabi, S. Ait-Aoudia, A. Hadid
{"title":"Face verification using local binary patterns and generic model adaptation","authors":"Elhocine Boutellaa, F. Harizi, Messaoud Bengherabi, S. Ait-Aoudia, A. Hadid","doi":"10.1504/IJBM.2015.069502","DOIUrl":null,"url":null,"abstract":"The popular local binary patterns LBP have been highly successful in representing and recognising faces. However, the original LBP-based face recognition method has some problems that need to be addressed. In this work, we propose two approaches to address the histogram representation drawbacks in the LBP-based face verification system. The first approach employs vector quantisation maximum a posteriori adaptation VQMAP model, where a generic face model is obtained by vector quantisation and the user models are inferred using maximum a posteriori adaptation. The second approach proposes an enhanced LBP histogram representation by adapting a generic face histogram to each user. Moreover, the two proposed approaches are further fused to enhance the verification performance. We evaluate our proposed approaches on two publicly available databases, namely BANCA and XM2VTS, and compare the results against the original LBP approach and its variants, demonstrating very promising results.","PeriodicalId":262486,"journal":{"name":"Int. J. Biom.","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Biom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBM.2015.069502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The popular local binary patterns LBP have been highly successful in representing and recognising faces. However, the original LBP-based face recognition method has some problems that need to be addressed. In this work, we propose two approaches to address the histogram representation drawbacks in the LBP-based face verification system. The first approach employs vector quantisation maximum a posteriori adaptation VQMAP model, where a generic face model is obtained by vector quantisation and the user models are inferred using maximum a posteriori adaptation. The second approach proposes an enhanced LBP histogram representation by adapting a generic face histogram to each user. Moreover, the two proposed approaches are further fused to enhance the verification performance. We evaluate our proposed approaches on two publicly available databases, namely BANCA and XM2VTS, and compare the results against the original LBP approach and its variants, demonstrating very promising results.
使用局部二值模式和通用模型自适应的人脸验证
流行的局部二元模式LBP在表示和识别人脸方面取得了很大的成功。然而,原有的基于lbp的人脸识别方法存在一些需要解决的问题。在这项工作中,我们提出了两种方法来解决基于lbp的人脸验证系统中直方图表示的缺点。第一种方法采用矢量量化最大后验自适应VQMAP模型,通过矢量量化获得通用人脸模型,并通过最大后验自适应推断用户模型。第二种方法提出了一种增强的LBP直方图表示,通过对每个用户调整通用的面部直方图。进一步将两种方法进行融合,提高了验证性能。我们在两个公开可用的数据库(即BANCA和XM2VTS)上评估了我们提出的方法,并将结果与原始LBP方法及其变体进行了比较,显示出非常有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信