Using sequential and non-sequential patterns in predictive Web usage mining tasks

B. Mobasher, H. Dai, Tao Luo, M. Nakagawa
{"title":"Using sequential and non-sequential patterns in predictive Web usage mining tasks","authors":"B. Mobasher, H. Dai, Tao Luo, M. Nakagawa","doi":"10.1109/ICDM.2002.1184025","DOIUrl":null,"url":null,"abstract":"We describe an efficient framework for Web personalization based on sequential and non-sequential pattern discovery from usage data. Our experimental results performed on real usage data indicate that more restrictive patterns, such as contiguous sequential patterns (e.g., frequent navigational paths) are more suitable for predictive tasks, such as Web prefetching, (which involve predicting which item is accessed next by a user), while less constrained patterns, such as frequent item sets or general sequential patterns are more effective alternatives in the context of Web personalization and recommender systems.","PeriodicalId":405340,"journal":{"name":"2002 IEEE International Conference on Data Mining, 2002. Proceedings.","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"197","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 IEEE International Conference on Data Mining, 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2002.1184025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 197

Abstract

We describe an efficient framework for Web personalization based on sequential and non-sequential pattern discovery from usage data. Our experimental results performed on real usage data indicate that more restrictive patterns, such as contiguous sequential patterns (e.g., frequent navigational paths) are more suitable for predictive tasks, such as Web prefetching, (which involve predicting which item is accessed next by a user), while less constrained patterns, such as frequent item sets or general sequential patterns are more effective alternatives in the context of Web personalization and recommender systems.
在预测性Web使用挖掘任务中使用顺序和非顺序模式
我们描述了一个基于从使用数据中发现顺序和非顺序模式的高效Web个性化框架。我们在实际使用数据上进行的实验结果表明,限制性更强的模式,如连续顺序模式(例如,频繁导航路径)更适合于预测性任务,如Web预取(涉及预测用户下一个访问的项目),而较少约束的模式,如频繁项目集或一般顺序模式,在Web个性化和推荐系统的上下文中是更有效的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信