Mining Approximate Frequent Patterns from Noisy Databases

Xiaomei Yu, Yongqin Li, Hong Wang
{"title":"Mining Approximate Frequent Patterns from Noisy Databases","authors":"Xiaomei Yu, Yongqin Li, Hong Wang","doi":"10.1109/BWCCA.2015.29","DOIUrl":null,"url":null,"abstract":"As an important branch in the field of frequent pattern mining, approximate frequent pattern (AFP) mining attracts much attention recently. Various algorithms have been proposed to discover long true AFPs in presence of random noise. This paper considers the key issues of AFP mining in noisy databases, and categorizes the previous approaches according to the ways they cope with missing items in the transactions. And then a study of different data models on AFP is presented, in which the merits and defects are analyzed. Finally, we draw a conclusion and propose some solutions to deal with the problems in the field of AFP mining.","PeriodicalId":193597,"journal":{"name":"2015 10th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BWCCA.2015.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

As an important branch in the field of frequent pattern mining, approximate frequent pattern (AFP) mining attracts much attention recently. Various algorithms have been proposed to discover long true AFPs in presence of random noise. This paper considers the key issues of AFP mining in noisy databases, and categorizes the previous approaches according to the ways they cope with missing items in the transactions. And then a study of different data models on AFP is presented, in which the merits and defects are analyzed. Finally, we draw a conclusion and propose some solutions to deal with the problems in the field of AFP mining.
从噪声数据库中挖掘近似频繁模式
近似频繁模式挖掘作为频繁模式挖掘领域的一个重要分支,近年来受到了广泛的关注。已经提出了各种算法来发现存在随机噪声的长真AFPs。本文考虑了噪声数据库中AFP挖掘的关键问题,并根据它们处理交易中缺失项目的方式对以前的方法进行了分类。然后对AFP的不同数据模型进行了研究,分析了各种模型的优缺点。最后,对AFP采矿领域存在的问题进行了总结,并提出了相应的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信