A DESCRIPTION OF THE SETS OF LEBESGUE POINTS AND POINTS OF SUMMABILITY OF A FOURIER SERIES

A. D’yachkov
{"title":"A DESCRIPTION OF THE SETS OF LEBESGUE POINTS AND POINTS OF SUMMABILITY OF A FOURIER SERIES","authors":"A. D’yachkov","doi":"10.1070/SM1993V074N01ABEH003338","DOIUrl":null,"url":null,"abstract":"The set of Lebesgue points of a locally integrable function on -dimensional Euclidean space , , is an -set of full measure. In this article it is shown that every -set of full measure is the set of Lebesgue points of some measurable bounded function, and, further, that a set with these properties is the set of points of convergence and nontangential (stable) convergence of a singular integral of convolution type: for some measurable bounded function . On the basis of this result the set of points of summability of a multiple Fourier series by methods of Abel, Riesz, and Picard types is described.","PeriodicalId":208776,"journal":{"name":"Mathematics of The Ussr-sbornik","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-sbornik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/SM1993V074N01ABEH003338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The set of Lebesgue points of a locally integrable function on -dimensional Euclidean space , , is an -set of full measure. In this article it is shown that every -set of full measure is the set of Lebesgue points of some measurable bounded function, and, further, that a set with these properties is the set of points of convergence and nontangential (stable) convergence of a singular integral of convolution type: for some measurable bounded function . On the basis of this result the set of points of summability of a multiple Fourier series by methods of Abel, Riesz, and Picard types is described.
傅立叶级数的勒贝格点和可和点集合的描述
一个局部可积函数在欧几里德空间上的勒贝格点的集合是一个满测度的-集合。本文证明了每一个全测度的集合都是某可测有界函数的勒贝格点的集合,并进一步证明了具有这些性质的集合是某可测有界函数的卷积型奇异积分的收敛点和非切(稳定)收敛点的集合。在此结果的基础上,用Abel、Riesz和Picard三种方法描述了多重傅立叶级数的可和点集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信