De-noising analysis of mammogram images in the wavelet domain using hard and soft thresholding

Saima Anwar Lashari, R. Ibrahim, N. Senan
{"title":"De-noising analysis of mammogram images in the wavelet domain using hard and soft thresholding","authors":"Saima Anwar Lashari, R. Ibrahim, N. Senan","doi":"10.1109/WICT.2014.7077293","DOIUrl":null,"url":null,"abstract":"The noisy nature of digital mammograms and low contrast of suspicious areas which make medical images de-noising a challenging problem. Therefore, image de-noising is an important task in image processing, thus the use of wavelet transform provides better and improved quality of an image and reduces noise level. For medical images, many wavelets like db1, sym8, coif1, coif3 etc can be used for de-noising of a medical image. However, in this paper, haar, sym8 daubechies db3 (mallat), daubechies db4 at certain level of soft and hard threshold have been calculated. Later, peak signal to noise ratio (PSNR) values are calculated for these wavelet methods. These experiments help to select the best wavelet transform for the de-noising of particular medical images such as mammogram images.","PeriodicalId":439852,"journal":{"name":"2014 4th World Congress on Information and Communication Technologies (WICT 2014)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 4th World Congress on Information and Communication Technologies (WICT 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WICT.2014.7077293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The noisy nature of digital mammograms and low contrast of suspicious areas which make medical images de-noising a challenging problem. Therefore, image de-noising is an important task in image processing, thus the use of wavelet transform provides better and improved quality of an image and reduces noise level. For medical images, many wavelets like db1, sym8, coif1, coif3 etc can be used for de-noising of a medical image. However, in this paper, haar, sym8 daubechies db3 (mallat), daubechies db4 at certain level of soft and hard threshold have been calculated. Later, peak signal to noise ratio (PSNR) values are calculated for these wavelet methods. These experiments help to select the best wavelet transform for the de-noising of particular medical images such as mammogram images.
基于硬阈值和软阈值的小波域乳房x线图像去噪分析
数字乳房x线照片的噪声性质和可疑区域的低对比度使医学图像去噪成为一个具有挑战性的问题。因此,图像去噪是图像处理中的一项重要任务,使用小波变换可以提高图像质量,降低噪声水平。对于医学图像,可以使用db1、sym8、coif1、coif3等小波对医学图像进行去噪。然而,本文计算了一定软、硬阈值水平下的haar、sym8、daubechies db3 (mallat)、daubechies db4。然后对这些小波方法计算峰值信噪比(PSNR)。这些实验有助于选择最佳的小波变换对特定的医学图像(如乳房x光片图像)进行去噪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信