A statistical radar clutter classifier

W. Stehwien, S. Haykin
{"title":"A statistical radar clutter classifier","authors":"W. Stehwien, S. Haykin","doi":"10.1109/NRC.1989.47635","DOIUrl":null,"url":null,"abstract":"An algorithm that successfully classifies radar clutter into one of several major categories, including bird, weather, and target classes, is described. Parametric Bayes classification is applied to a set of features derived from the reflection coefficients computed using the multisegment version of Burg's formula. These coefficients are then transformed and grouped to meet the requirements for multivariate Gaussian behavior. The addition of two amplitude-related features aids in distinguishing between point targets and distributed clutter. Average probabilities of correct classification of 70% to 90% have been found when testing the classifier on recorded radar data.<<ETX>>","PeriodicalId":167059,"journal":{"name":"Proceedings of the IEEE National Radar Conference","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE National Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRC.1989.47635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

An algorithm that successfully classifies radar clutter into one of several major categories, including bird, weather, and target classes, is described. Parametric Bayes classification is applied to a set of features derived from the reflection coefficients computed using the multisegment version of Burg's formula. These coefficients are then transformed and grouped to meet the requirements for multivariate Gaussian behavior. The addition of two amplitude-related features aids in distinguishing between point targets and distributed clutter. Average probabilities of correct classification of 70% to 90% have been found when testing the classifier on recorded radar data.<>
统计雷达杂波分类器
描述了一种成功地将雷达杂波分类为几种主要类别之一的算法,包括鸟类,天气和目标类别。参数贝叶斯分类应用于一组特征,这些特征来自使用Burg公式的多段版本计算的反射系数。然后对这些系数进行变换和分组,以满足多元高斯行为的要求。增加两个振幅相关的特征有助于区分点目标和分布式杂波。在雷达记录数据上进行测试,发现分类器的平均正确分类概率为70% ~ 90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信