A memetic co-clustering algorithm for gene expression profiles and biological annotation

N. Speer, C. Spieth, A. Zell
{"title":"A memetic co-clustering algorithm for gene expression profiles and biological annotation","authors":"N. Speer, C. Spieth, A. Zell","doi":"10.1109/CEC.2004.1331091","DOIUrl":null,"url":null,"abstract":"With the invention of microarrays, researchers are capable of measuring thousands of gene expression levels in parallel at various time points of the biological process. To investigate general regulatory mechanisms, biologists cluster genes based on their expression patterns. In this paper, we propose a new memetic co-clustering algorithm for expression profiles, which incorporates a priori knowledge in the form of gene ontology information. Ontologies offer a mechanism to capture knowledge in a shareable form that is also processable by computers. The use of this additional annotation information promises to improve biological data analysis and simplifies the identification of processes that are relevant under the measured conditions.","PeriodicalId":152088,"journal":{"name":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2004.1331091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

With the invention of microarrays, researchers are capable of measuring thousands of gene expression levels in parallel at various time points of the biological process. To investigate general regulatory mechanisms, biologists cluster genes based on their expression patterns. In this paper, we propose a new memetic co-clustering algorithm for expression profiles, which incorporates a priori knowledge in the form of gene ontology information. Ontologies offer a mechanism to capture knowledge in a shareable form that is also processable by computers. The use of this additional annotation information promises to improve biological data analysis and simplifies the identification of processes that are relevant under the measured conditions.
基因表达谱和生物注释的模因共聚类算法
随着微阵列的发明,研究人员能够在生物过程的不同时间点平行测量数千个基因表达水平。为了研究一般的调控机制,生物学家根据基因的表达模式对它们进行聚类。本文提出了一种新的表达谱模因共聚算法,该算法以基因本体信息的形式引入先验知识。本体提供了一种机制,以可共享的形式捕获知识,这种形式也可由计算机处理。使用这些额外的注释信息有望改善生物数据分析,并简化在测量条件下相关过程的识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信