Thomas Lundqvist, Andreas de Blanche, H. R. H. Andersson
{"title":"Thing-to-thing electricity micro payments using blockchain technology","authors":"Thomas Lundqvist, Andreas de Blanche, H. R. H. Andersson","doi":"10.1109/GIOTS.2017.8016254","DOIUrl":null,"url":null,"abstract":"Thing-to-thing payments are a key enabler in the Internet of Things (IoT) era, to ubiquitously allow for devices to pay each other for services without any human interaction. Traditional credit card-based systems are not able to handle this new paradigm, however blockchain technology is a promising payment candidate in this context. The prominent example of blockchain technology is Bitcoin, with its decentralized structure and ease of account creation. This paper presents a proof-of-concept implementation of a smart cable that connects to a smart socket and without any human interaction pays for electricity. In this paper, we identify several obstacles for the widespread use of bitcoins in thing-to-thing payments. A critical problem is the high transaction fees in the Bitcoin network when doing micro transactions. To reduce this impact, we present a single-fee micro-payment protocol that aggregates multiple smaller payments incrementally into one larger transaction needing only one transaction fee. The proof-of concept shows that trustless, autonomous, and ubiquitous thing-to-thing micro-payments is no longer a future technology.","PeriodicalId":413939,"journal":{"name":"2017 Global Internet of Things Summit (GIoTS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Global Internet of Things Summit (GIoTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GIOTS.2017.8016254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72
Abstract
Thing-to-thing payments are a key enabler in the Internet of Things (IoT) era, to ubiquitously allow for devices to pay each other for services without any human interaction. Traditional credit card-based systems are not able to handle this new paradigm, however blockchain technology is a promising payment candidate in this context. The prominent example of blockchain technology is Bitcoin, with its decentralized structure and ease of account creation. This paper presents a proof-of-concept implementation of a smart cable that connects to a smart socket and without any human interaction pays for electricity. In this paper, we identify several obstacles for the widespread use of bitcoins in thing-to-thing payments. A critical problem is the high transaction fees in the Bitcoin network when doing micro transactions. To reduce this impact, we present a single-fee micro-payment protocol that aggregates multiple smaller payments incrementally into one larger transaction needing only one transaction fee. The proof-of concept shows that trustless, autonomous, and ubiquitous thing-to-thing micro-payments is no longer a future technology.