A. Naderipour, Z. Abdul-Malek, E. Abohamzeh, V. Ramachandaramurthy, M. R. Miveh
{"title":"Control strategy of Grid-Connected PV Inverters in Microgrid with Nonlinear Operating Conditions","authors":"A. Naderipour, Z. Abdul-Malek, E. Abohamzeh, V. Ramachandaramurthy, M. R. Miveh","doi":"10.1109/PECON.2018.8684119","DOIUrl":null,"url":null,"abstract":"This paper proposes a current control strategy for a Photovoltaic (PV) system in three-phase three-wire grid-connected microgrids under unbalanced and nonlinear load conditions. The proposed control strategy comprise of a multi-loop control technique to provide balanced output current, multi-resonant harmonic compensator to reduce the Total Harmonic Distortion (THD) and a droop-based control scheme to achieve accurate power sharing. Additionally, the current THDs were reduced from above 17.51% to lower than 3% with the proposed control strategy under nonlinear load conditions. The effectiveness of the proposed control strategy was proven via simulation using MATLAB/Simulink.","PeriodicalId":278078,"journal":{"name":"2018 IEEE 7th International Conference on Power and Energy (PECon)","volume":"27 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 7th International Conference on Power and Energy (PECon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PECON.2018.8684119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper proposes a current control strategy for a Photovoltaic (PV) system in three-phase three-wire grid-connected microgrids under unbalanced and nonlinear load conditions. The proposed control strategy comprise of a multi-loop control technique to provide balanced output current, multi-resonant harmonic compensator to reduce the Total Harmonic Distortion (THD) and a droop-based control scheme to achieve accurate power sharing. Additionally, the current THDs were reduced from above 17.51% to lower than 3% with the proposed control strategy under nonlinear load conditions. The effectiveness of the proposed control strategy was proven via simulation using MATLAB/Simulink.