{"title":"Formation Mechanism of high Ni content (Cu, Ni)6Sn5 in Cu/Sn/Ni microbump for solid state aging","authors":"Haiyang Yu, C. Kao","doi":"10.1109/ICTA56932.2022.9962977","DOIUrl":null,"url":null,"abstract":"Due to its low cost, the Cu/Sn/Ni microbump is the most widely used structure in electronic packaging. Recent studies have characterized the evolution of the microstructure and phase formation in this system, and a unique (Cu,Ni)6Sn5 phase has been discovered with a high Ni content. However, there has been debate over the formation mechanism of this phase. This study builds a model of the formation mechanism of (Cu,Ni)6Sn5 and provides direct proof.","PeriodicalId":325602,"journal":{"name":"2022 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA)","volume":"129 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTA56932.2022.9962977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Due to its low cost, the Cu/Sn/Ni microbump is the most widely used structure in electronic packaging. Recent studies have characterized the evolution of the microstructure and phase formation in this system, and a unique (Cu,Ni)6Sn5 phase has been discovered with a high Ni content. However, there has been debate over the formation mechanism of this phase. This study builds a model of the formation mechanism of (Cu,Ni)6Sn5 and provides direct proof.