A simple and efficient method for segmentation and classification of aerial images

P. Ahmadi
{"title":"A simple and efficient method for segmentation and classification of aerial images","authors":"P. Ahmadi","doi":"10.1109/CISP.2013.6744061","DOIUrl":null,"url":null,"abstract":"Segmentation of aerial images has been a challenging task in recent years. This paper introduces a simple and efficient method for segmentation and classification of aerial images based on a pixel-level classification. To this end, we use the Gabor texture features in HSV color space as our best experienced features for aerial images segmentation and classification. We test different classifiers including KNN, SVM and a classifier based on sparse representation. Comparison of our proposed method with a sample of segmentation pre-process based classification methods shows that our pixel-wise approach results in higher accuracy results with lower computation time.","PeriodicalId":442320,"journal":{"name":"2013 6th International Congress on Image and Signal Processing (CISP)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 6th International Congress on Image and Signal Processing (CISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP.2013.6744061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Segmentation of aerial images has been a challenging task in recent years. This paper introduces a simple and efficient method for segmentation and classification of aerial images based on a pixel-level classification. To this end, we use the Gabor texture features in HSV color space as our best experienced features for aerial images segmentation and classification. We test different classifiers including KNN, SVM and a classifier based on sparse representation. Comparison of our proposed method with a sample of segmentation pre-process based classification methods shows that our pixel-wise approach results in higher accuracy results with lower computation time.
一种简单有效的航空图像分割与分类方法
近年来,航空图像分割一直是一项具有挑战性的任务。本文介绍了一种简单有效的基于像素级分类的航拍图像分割与分类方法。为此,我们使用HSV色彩空间中的Gabor纹理特征作为航空图像分割和分类的最佳经验特征。我们测试了不同的分类器,包括KNN, SVM和基于稀疏表示的分类器。将该方法与基于分割预处理的分类方法进行了比较,结果表明,基于像素的分类方法在较短的计算时间内获得了更高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信