Sentiment Polarization in Online Social Networks: The Flow of Hate Speech

K. Katsarou, Sukanya Sunder, Vinicius Woloszyn, Konstantinos Semertzidis
{"title":"Sentiment Polarization in Online Social Networks: The Flow of Hate Speech","authors":"K. Katsarou, Sukanya Sunder, Vinicius Woloszyn, Konstantinos Semertzidis","doi":"10.1109/SNAMS53716.2021.9732077","DOIUrl":null,"url":null,"abstract":"The influence of sentiment polarization and ex-change in online social networks has been growing and studied by many researchers and organizations worldwide. For example, the sentiments expressed in a text concerning a topic in the discussion tend to influence a community when a Twitter user retweets the original text, causing a chain of reactions within a network. This paper investigates sentiment polarization in Twitter, focusing on tweets with the hashtags #Coronavirus, #ClimateChange #Immigrants, and #MeToo. Specifically, we collect the tweets mentioned above and classify them into five categories: hate speech, offensive, sexism, positive, and neutral. In this context, we address the problem as a multiclass classification problem by using the pre-trained language models ULMFiT and AWD-LSTM, which achieved a Fmicro of 0.85. Finally, we use the classified dataset to conduct a case study in which we capture the sentiment orientation during the network evolution.","PeriodicalId":387260,"journal":{"name":"2021 Eighth International Conference on Social Network Analysis, Management and Security (SNAMS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Eighth International Conference on Social Network Analysis, Management and Security (SNAMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNAMS53716.2021.9732077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The influence of sentiment polarization and ex-change in online social networks has been growing and studied by many researchers and organizations worldwide. For example, the sentiments expressed in a text concerning a topic in the discussion tend to influence a community when a Twitter user retweets the original text, causing a chain of reactions within a network. This paper investigates sentiment polarization in Twitter, focusing on tweets with the hashtags #Coronavirus, #ClimateChange #Immigrants, and #MeToo. Specifically, we collect the tweets mentioned above and classify them into five categories: hate speech, offensive, sexism, positive, and neutral. In this context, we address the problem as a multiclass classification problem by using the pre-trained language models ULMFiT and AWD-LSTM, which achieved a Fmicro of 0.85. Finally, we use the classified dataset to conduct a case study in which we capture the sentiment orientation during the network evolution.
在线社交网络中的情感两极分化:仇恨言论的流动
在线社交网络中情绪极化和交换的影响已经被越来越多的研究者和组织研究。例如,当Twitter用户转发原始文本时,讨论中关于某个主题的文本所表达的情绪往往会影响社区,从而在网络中引起连锁反应。本文调查了推特上的情绪两极分化,重点关注带有#冠状病毒、#气候变化、#移民和#我也是标签的推文。具体来说,我们收集了上面提到的推文,并将它们分为五类:仇恨言论、攻击性言论、性别歧视言论、积极言论和中性言论。在这种情况下,我们通过使用预训练的语言模型ULMFiT和AWD-LSTM将问题作为多类分类问题来解决,其Fmicro达到了0.85。最后,我们使用分类数据集进行了一个案例研究,其中我们捕获了网络进化过程中的情感取向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信