A Deep Learning Approach to Predict Malnutrition Status of 0-59 Month's Older Children in Bangladesh

Mehrab Shahriar, Mirza Shaheen Iqubal, S. Mitra, A. Das
{"title":"A Deep Learning Approach to Predict Malnutrition Status of 0-59 Month's Older Children in Bangladesh","authors":"Mehrab Shahriar, Mirza Shaheen Iqubal, S. Mitra, A. Das","doi":"10.1109/ICIAICT.2019.8784823","DOIUrl":null,"url":null,"abstract":"The state of malnutrition can be considered as a predominant issue for a developing nation like Bangladesh. Since today's children are the future's workforce, it explicitly impacts to the economic improvement of Bangladesh. So, prevention of child malnutrition is the most foremost investigation at this stage. The study aims to classify malnutrition based on deep learning approach of predictive modeling on significant malnutrition features to predict malnutrition status of a 0–59 months' older child. To do so an Artificial Neural Network (ANN) approach is applied to Bangladesh Demographic and Health Survey 2014 (BDHS) children data. This study clarifies how a predictive model classifies the malnutrition condition. ANN approach shows the best accuracy with wasting, underweight, and stunting. In conclusion, determining the malnutrition status using deep learning approach is the most scientific way to deal with it both for policymakers and clinicians.","PeriodicalId":277919,"journal":{"name":"2019 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAICT.2019.8784823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The state of malnutrition can be considered as a predominant issue for a developing nation like Bangladesh. Since today's children are the future's workforce, it explicitly impacts to the economic improvement of Bangladesh. So, prevention of child malnutrition is the most foremost investigation at this stage. The study aims to classify malnutrition based on deep learning approach of predictive modeling on significant malnutrition features to predict malnutrition status of a 0–59 months' older child. To do so an Artificial Neural Network (ANN) approach is applied to Bangladesh Demographic and Health Survey 2014 (BDHS) children data. This study clarifies how a predictive model classifies the malnutrition condition. ANN approach shows the best accuracy with wasting, underweight, and stunting. In conclusion, determining the malnutrition status using deep learning approach is the most scientific way to deal with it both for policymakers and clinicians.
预测孟加拉国0-59个月大儿童营养不良状况的深度学习方法
对于像孟加拉国这样的发展中国家来说,营养不良是一个主要问题。由于今天的儿童是未来的劳动力,这显然会对孟加拉国的经济改善产生影响。因此,预防儿童营养不良是现阶段最重要的调查。本研究旨在基于显著营养不良特征预测建模的深度学习方法对营养不良进行分类,预测0-59月龄儿童的营养不良状况。为此,对2014年孟加拉国人口与健康调查(BDHS)儿童数据采用了人工神经网络方法。这项研究阐明了预测模型如何对营养不良状况进行分类。人工神经网络方法在消瘦、体重不足和发育不良方面显示出最好的准确性。综上所述,对于决策者和临床医生来说,利用深度学习方法确定营养不良状况是最科学的处理方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信