Energy reduction in video systems: the GreenVideo project

M. Pelcat, Erwan Nogues, X. Ducloux
{"title":"Energy reduction in video systems: the GreenVideo project","authors":"M. Pelcat, Erwan Nogues, X. Ducloux","doi":"10.1145/2903150.2911716","DOIUrl":null,"url":null,"abstract":"With the current progress in microelectronics and the constant increase of network bandwidth, video applications are becoming ubiquitous and spread especially in the context of mobility. In 2019, 80% of the worldwide Internet traffic will be video. Nevertheless, optimizing the energy consumption for video processing is still a challenge due to the large amount of processed data. This talk will concentrate on the energy optimization of video codecs. In the first part, the Green Metadata initiative will be presented. In November 2014, MPEG released a new standard, named Green Metadata that fosters energy-efficient media on consumer devices. This standard specifies metadata to be transmitted between encoder and decoder for reducing power consumption during encoding, decoding and display. The different metadata considered in the standard will be presented. More specifically, the Green Adaptive Streaming proposition will be detailed. In the second part, the energy optimization of an HEVC decoder implemented on a modern MP-SoC will be presented. The different techniques used to implement efficiently an HEVC decoder on a general-purpose processor (GPP) will be detailed. Different levels of parallelism have been exploited to increase and exploit slack time. A sophisticated DVFS mechanism has been developed to handle the variability of the decoding process for each frame. To get further energy gains, the concept of approximate computing is exploited to propose a modified HEVC decoder capable of tuning its energy gains while managing the decoding quality versus energy trade-off. The work detailed in this second part of the talk is the result of the french GreenVideo FUI project.","PeriodicalId":226569,"journal":{"name":"Proceedings of the ACM International Conference on Computing Frontiers","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2903150.2911716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the current progress in microelectronics and the constant increase of network bandwidth, video applications are becoming ubiquitous and spread especially in the context of mobility. In 2019, 80% of the worldwide Internet traffic will be video. Nevertheless, optimizing the energy consumption for video processing is still a challenge due to the large amount of processed data. This talk will concentrate on the energy optimization of video codecs. In the first part, the Green Metadata initiative will be presented. In November 2014, MPEG released a new standard, named Green Metadata that fosters energy-efficient media on consumer devices. This standard specifies metadata to be transmitted between encoder and decoder for reducing power consumption during encoding, decoding and display. The different metadata considered in the standard will be presented. More specifically, the Green Adaptive Streaming proposition will be detailed. In the second part, the energy optimization of an HEVC decoder implemented on a modern MP-SoC will be presented. The different techniques used to implement efficiently an HEVC decoder on a general-purpose processor (GPP) will be detailed. Different levels of parallelism have been exploited to increase and exploit slack time. A sophisticated DVFS mechanism has been developed to handle the variability of the decoding process for each frame. To get further energy gains, the concept of approximate computing is exploited to propose a modified HEVC decoder capable of tuning its energy gains while managing the decoding quality versus energy trade-off. The work detailed in this second part of the talk is the result of the french GreenVideo FUI project.
视频系统节能:绿色视频项目
随着微电子技术的发展和网络带宽的不断增加,视频应用越来越普遍,尤其是在移动环境下。2019年,全球80%的互联网流量将是视频。然而,由于处理的数据量很大,优化视频处理的能耗仍然是一个挑战。本讲座将集中讨论视频编解码器的能量优化。在第一部分中,将介绍绿色元数据计划。2014年11月,MPEG发布了一项名为“绿色元数据”的新标准,旨在促进消费设备上的节能媒体。本标准规定了在编码器和解码器之间传输的元数据,以减少编码、解码和显示过程中的功耗。将介绍标准中考虑的不同元数据。更具体地说,绿色自适应流的主张将被详细说明。在第二部分中,将介绍在现代MP-SoC上实现HEVC解码器的能量优化。本文将详细介绍在通用处理器(GPP)上有效实现HEVC解码器的不同技术。利用不同程度的并行性来增加和利用空闲时间。一个复杂的DVFS机制已经被开发来处理每帧解码过程的可变性。为了获得进一步的能量增益,利用近似计算的概念提出了一种改进的HEVC解码器,该解码器能够在管理解码质量与能量权衡的同时调整其能量增益。第二部分详细介绍的工作是法国GreenVideo FUI项目的成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信