Maximum Likelihood Estimation Error and Operational Value-at-Risk Stability

Paul L. Larsen
{"title":"Maximum Likelihood Estimation Error and Operational Value-at-Risk Stability","authors":"Paul L. Larsen","doi":"10.21314/JOP.2018.217","DOIUrl":null,"url":null,"abstract":"The challenge of using small sample sizes for operational risk capital models fitted via maximum likelihood estimation is well recognized, yet the literature generally provides warning examples rather than a systematic approach. We present a general framework for analyzing maximum likelihood estimation error on operational value-at-risk as a function of sample size for five severity distributions commonly used in operational risk capital models. More specifically, we study the estimation error along three dimensions: the choice of severity distribution, the sample size and the heaviness of the underlying losses. We apply these results to model selection and explore implications for operational risk modeling.","PeriodicalId":203996,"journal":{"name":"ERN: Value-at-Risk (Topic)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Value-at-Risk (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21314/JOP.2018.217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The challenge of using small sample sizes for operational risk capital models fitted via maximum likelihood estimation is well recognized, yet the literature generally provides warning examples rather than a systematic approach. We present a general framework for analyzing maximum likelihood estimation error on operational value-at-risk as a function of sample size for five severity distributions commonly used in operational risk capital models. More specifically, we study the estimation error along three dimensions: the choice of severity distribution, the sample size and the heaviness of the underlying losses. We apply these results to model selection and explore implications for operational risk modeling.
最大似然估计误差与操作风险值稳定性
通过最大似然估计拟合的操作风险资本模型使用小样本量的挑战是公认的,但文献通常提供警告示例,而不是系统的方法。我们提出了一个一般框架,用于分析操作风险价值的最大似然估计误差作为操作风险资本模型中常用的五种严重性分布的样本量的函数。更具体地说,我们研究了三个维度的估计误差:严重性分布的选择,样本量和潜在损失的严重性。我们将这些结果应用于模型选择,并探索操作风险建模的含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信